Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+3-\left(4x+1+x-2\right)=-2\sqrt{\left(4x+1\right)\left(x-2\right)}
Subtract 4x+1+x-2 from both sides of the equation.
x+3-\left(5x+1-2\right)=-2\sqrt{\left(4x+1\right)\left(x-2\right)}
Combine 4x and x to get 5x.
x+3-\left(5x-1\right)=-2\sqrt{\left(4x+1\right)\left(x-2\right)}
Subtract 2 from 1 to get -1.
x+3-5x+1=-2\sqrt{\left(4x+1\right)\left(x-2\right)}
To find the opposite of 5x-1, find the opposite of each term.
-4x+3+1=-2\sqrt{\left(4x+1\right)\left(x-2\right)}
Combine x and -5x to get -4x.
-4x+4=-2\sqrt{\left(4x+1\right)\left(x-2\right)}
Add 3 and 1 to get 4.
-4x+4=-2\sqrt{4x^{2}-7x-2}
Use the distributive property to multiply 4x+1 by x-2 and combine like terms.
\left(-4x+4\right)^{2}=\left(-2\sqrt{4x^{2}-7x-2}\right)^{2}
Square both sides of the equation.
16x^{2}-32x+16=\left(-2\sqrt{4x^{2}-7x-2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-4x+4\right)^{2}.
16x^{2}-32x+16=\left(-2\right)^{2}\left(\sqrt{4x^{2}-7x-2}\right)^{2}
Expand \left(-2\sqrt{4x^{2}-7x-2}\right)^{2}.
16x^{2}-32x+16=4\left(\sqrt{4x^{2}-7x-2}\right)^{2}
Calculate -2 to the power of 2 and get 4.
16x^{2}-32x+16=4\left(4x^{2}-7x-2\right)
Calculate \sqrt{4x^{2}-7x-2} to the power of 2 and get 4x^{2}-7x-2.
16x^{2}-32x+16=16x^{2}-28x-8
Use the distributive property to multiply 4 by 4x^{2}-7x-2.
16x^{2}-32x+16-16x^{2}=-28x-8
Subtract 16x^{2} from both sides.
-32x+16=-28x-8
Combine 16x^{2} and -16x^{2} to get 0.
-32x+16+28x=-8
Add 28x to both sides.
-4x+16=-8
Combine -32x and 28x to get -4x.
-4x=-8-16
Subtract 16 from both sides.
-4x=-24
Subtract 16 from -8 to get -24.
x=\frac{-24}{-4}
Divide both sides by -4.
x=6
Divide -24 by -4 to get 6.
6+3=4\times 6+1+6-2-2\sqrt{\left(4\times 6+1\right)\left(6-2\right)}
Substitute 6 for x in the equation x+3=4x+1+x-2-2\sqrt{\left(4x+1\right)\left(x-2\right)}.
9=9
Simplify. The value x=6 satisfies the equation.
x=6
Equation 4-4x=-2\sqrt{4x^{2}-7x-2} has a unique solution.