Solve for x
x = \frac{3 {(\sqrt{5} + 1)}}{4} \approx 2.427050983
Graph
Share
Copied to clipboard
x+3-\sqrt{5}x=0
Subtract \sqrt{5}x from both sides.
x-\sqrt{5}x=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
\left(1-\sqrt{5}\right)x=-3
Combine all terms containing x.
\frac{\left(1-\sqrt{5}\right)x}{1-\sqrt{5}}=-\frac{3}{1-\sqrt{5}}
Divide both sides by 1-\sqrt{5}.
x=-\frac{3}{1-\sqrt{5}}
Dividing by 1-\sqrt{5} undoes the multiplication by 1-\sqrt{5}.
x=\frac{3\sqrt{5}+3}{4}
Divide -3 by 1-\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}