Solve for x (complex solution)
x=\frac{-57+\sqrt{115}i}{2}\approx -28.5+5.361902647i
Graph
Share
Copied to clipboard
\left(x+29\right)^{2}=\left(\sqrt{x}\right)^{2}
Square both sides of the equation.
x^{2}+58x+841=\left(\sqrt{x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+29\right)^{2}.
x^{2}+58x+841=x
Calculate \sqrt{x} to the power of 2 and get x.
x^{2}+58x+841-x=0
Subtract x from both sides.
x^{2}+57x+841=0
Combine 58x and -x to get 57x.
x=\frac{-57±\sqrt{57^{2}-4\times 841}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 57 for b, and 841 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-57±\sqrt{3249-4\times 841}}{2}
Square 57.
x=\frac{-57±\sqrt{3249-3364}}{2}
Multiply -4 times 841.
x=\frac{-57±\sqrt{-115}}{2}
Add 3249 to -3364.
x=\frac{-57±\sqrt{115}i}{2}
Take the square root of -115.
x=\frac{-57+\sqrt{115}i}{2}
Now solve the equation x=\frac{-57±\sqrt{115}i}{2} when ± is plus. Add -57 to i\sqrt{115}.
x=\frac{-\sqrt{115}i-57}{2}
Now solve the equation x=\frac{-57±\sqrt{115}i}{2} when ± is minus. Subtract i\sqrt{115} from -57.
x=\frac{-57+\sqrt{115}i}{2} x=\frac{-\sqrt{115}i-57}{2}
The equation is now solved.
\frac{-57+\sqrt{115}i}{2}+29=\sqrt{\frac{-57+\sqrt{115}i}{2}}
Substitute \frac{-57+\sqrt{115}i}{2} for x in the equation x+29=\sqrt{x}.
\frac{1}{2}+\frac{1}{2}i\times 115^{\frac{1}{2}}=\frac{1}{2}+\frac{1}{2}i\times 115^{\frac{1}{2}}
Simplify. The value x=\frac{-57+\sqrt{115}i}{2} satisfies the equation.
\frac{-\sqrt{115}i-57}{2}+29=\sqrt{\frac{-\sqrt{115}i-57}{2}}
Substitute \frac{-\sqrt{115}i-57}{2} for x in the equation x+29=\sqrt{x}.
-\frac{1}{2}i\times 115^{\frac{1}{2}}+\frac{1}{2}=-\left(\frac{1}{2}-\frac{1}{2}i\times 115^{\frac{1}{2}}\right)
Simplify. The value x=\frac{-\sqrt{115}i-57}{2} does not satisfy the equation.
x=\frac{-57+\sqrt{115}i}{2}
Equation x+29=\sqrt{x} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}