Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x+29\right)^{2}=\left(\sqrt{x}\right)^{2}
Square both sides of the equation.
x^{2}+58x+841=\left(\sqrt{x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+29\right)^{2}.
x^{2}+58x+841=x
Calculate \sqrt{x} to the power of 2 and get x.
x^{2}+58x+841-x=0
Subtract x from both sides.
x^{2}+57x+841=0
Combine 58x and -x to get 57x.
x=\frac{-57±\sqrt{57^{2}-4\times 841}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 57 for b, and 841 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-57±\sqrt{3249-4\times 841}}{2}
Square 57.
x=\frac{-57±\sqrt{3249-3364}}{2}
Multiply -4 times 841.
x=\frac{-57±\sqrt{-115}}{2}
Add 3249 to -3364.
x=\frac{-57±\sqrt{115}i}{2}
Take the square root of -115.
x=\frac{-57+\sqrt{115}i}{2}
Now solve the equation x=\frac{-57±\sqrt{115}i}{2} when ± is plus. Add -57 to i\sqrt{115}.
x=\frac{-\sqrt{115}i-57}{2}
Now solve the equation x=\frac{-57±\sqrt{115}i}{2} when ± is minus. Subtract i\sqrt{115} from -57.
x=\frac{-57+\sqrt{115}i}{2} x=\frac{-\sqrt{115}i-57}{2}
The equation is now solved.
\frac{-57+\sqrt{115}i}{2}+29=\sqrt{\frac{-57+\sqrt{115}i}{2}}
Substitute \frac{-57+\sqrt{115}i}{2} for x in the equation x+29=\sqrt{x}.
\frac{1}{2}+\frac{1}{2}i\times 115^{\frac{1}{2}}=\frac{1}{2}+\frac{1}{2}i\times 115^{\frac{1}{2}}
Simplify. The value x=\frac{-57+\sqrt{115}i}{2} satisfies the equation.
\frac{-\sqrt{115}i-57}{2}+29=\sqrt{\frac{-\sqrt{115}i-57}{2}}
Substitute \frac{-\sqrt{115}i-57}{2} for x in the equation x+29=\sqrt{x}.
-\frac{1}{2}i\times 115^{\frac{1}{2}}+\frac{1}{2}=-\left(\frac{1}{2}-\frac{1}{2}i\times 115^{\frac{1}{2}}\right)
Simplify. The value x=\frac{-\sqrt{115}i-57}{2} does not satisfy the equation.
x=\frac{-57+\sqrt{115}i}{2}
Equation x+29=\sqrt{x} has a unique solution.