Solve for x
x = \frac{\sqrt{641} + 25}{4} \approx 12.579494451
x=\frac{25-\sqrt{641}}{4}\approx -0.079494451
Graph
Share
Copied to clipboard
-25x+2x^{2}=2
Combine x and -26x to get -25x.
-25x+2x^{2}-2=0
Subtract 2 from both sides.
2x^{2}-25x-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\times 2\left(-2\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -25 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-25\right)±\sqrt{625-4\times 2\left(-2\right)}}{2\times 2}
Square -25.
x=\frac{-\left(-25\right)±\sqrt{625-8\left(-2\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-25\right)±\sqrt{625+16}}{2\times 2}
Multiply -8 times -2.
x=\frac{-\left(-25\right)±\sqrt{641}}{2\times 2}
Add 625 to 16.
x=\frac{25±\sqrt{641}}{2\times 2}
The opposite of -25 is 25.
x=\frac{25±\sqrt{641}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{641}+25}{4}
Now solve the equation x=\frac{25±\sqrt{641}}{4} when ± is plus. Add 25 to \sqrt{641}.
x=\frac{25-\sqrt{641}}{4}
Now solve the equation x=\frac{25±\sqrt{641}}{4} when ± is minus. Subtract \sqrt{641} from 25.
x=\frac{\sqrt{641}+25}{4} x=\frac{25-\sqrt{641}}{4}
The equation is now solved.
-25x+2x^{2}=2
Combine x and -26x to get -25x.
2x^{2}-25x=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}-25x}{2}=\frac{2}{2}
Divide both sides by 2.
x^{2}-\frac{25}{2}x=\frac{2}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{25}{2}x=1
Divide 2 by 2.
x^{2}-\frac{25}{2}x+\left(-\frac{25}{4}\right)^{2}=1+\left(-\frac{25}{4}\right)^{2}
Divide -\frac{25}{2}, the coefficient of the x term, by 2 to get -\frac{25}{4}. Then add the square of -\frac{25}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{25}{2}x+\frac{625}{16}=1+\frac{625}{16}
Square -\frac{25}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{25}{2}x+\frac{625}{16}=\frac{641}{16}
Add 1 to \frac{625}{16}.
\left(x-\frac{25}{4}\right)^{2}=\frac{641}{16}
Factor x^{2}-\frac{25}{2}x+\frac{625}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{25}{4}\right)^{2}}=\sqrt{\frac{641}{16}}
Take the square root of both sides of the equation.
x-\frac{25}{4}=\frac{\sqrt{641}}{4} x-\frac{25}{4}=-\frac{\sqrt{641}}{4}
Simplify.
x=\frac{\sqrt{641}+25}{4} x=\frac{25-\sqrt{641}}{4}
Add \frac{25}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}