Solve for x
x=\frac{\sqrt{409}-3}{40}\approx 0.43059371
x=\frac{-\sqrt{409}-3}{40}\approx -0.58059371
Graph
Share
Copied to clipboard
3x=5-20x^{2}
Combine x and 2x to get 3x.
3x-5=-20x^{2}
Subtract 5 from both sides.
3x-5+20x^{2}=0
Add 20x^{2} to both sides.
20x^{2}+3x-5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}-4\times 20\left(-5\right)}}{2\times 20}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 20 for a, 3 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 20\left(-5\right)}}{2\times 20}
Square 3.
x=\frac{-3±\sqrt{9-80\left(-5\right)}}{2\times 20}
Multiply -4 times 20.
x=\frac{-3±\sqrt{9+400}}{2\times 20}
Multiply -80 times -5.
x=\frac{-3±\sqrt{409}}{2\times 20}
Add 9 to 400.
x=\frac{-3±\sqrt{409}}{40}
Multiply 2 times 20.
x=\frac{\sqrt{409}-3}{40}
Now solve the equation x=\frac{-3±\sqrt{409}}{40} when ± is plus. Add -3 to \sqrt{409}.
x=\frac{-\sqrt{409}-3}{40}
Now solve the equation x=\frac{-3±\sqrt{409}}{40} when ± is minus. Subtract \sqrt{409} from -3.
x=\frac{\sqrt{409}-3}{40} x=\frac{-\sqrt{409}-3}{40}
The equation is now solved.
3x=5-20x^{2}
Combine x and 2x to get 3x.
3x+20x^{2}=5
Add 20x^{2} to both sides.
20x^{2}+3x=5
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{20x^{2}+3x}{20}=\frac{5}{20}
Divide both sides by 20.
x^{2}+\frac{3}{20}x=\frac{5}{20}
Dividing by 20 undoes the multiplication by 20.
x^{2}+\frac{3}{20}x=\frac{1}{4}
Reduce the fraction \frac{5}{20} to lowest terms by extracting and canceling out 5.
x^{2}+\frac{3}{20}x+\left(\frac{3}{40}\right)^{2}=\frac{1}{4}+\left(\frac{3}{40}\right)^{2}
Divide \frac{3}{20}, the coefficient of the x term, by 2 to get \frac{3}{40}. Then add the square of \frac{3}{40} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{20}x+\frac{9}{1600}=\frac{1}{4}+\frac{9}{1600}
Square \frac{3}{40} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{20}x+\frac{9}{1600}=\frac{409}{1600}
Add \frac{1}{4} to \frac{9}{1600} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{40}\right)^{2}=\frac{409}{1600}
Factor x^{2}+\frac{3}{20}x+\frac{9}{1600}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{40}\right)^{2}}=\sqrt{\frac{409}{1600}}
Take the square root of both sides of the equation.
x+\frac{3}{40}=\frac{\sqrt{409}}{40} x+\frac{3}{40}=-\frac{\sqrt{409}}{40}
Simplify.
x=\frac{\sqrt{409}-3}{40} x=\frac{-\sqrt{409}-3}{40}
Subtract \frac{3}{40} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}