Solve for x
x = \frac{\sqrt{48999994} + 7000}{3} \approx 4666.66652381
x=\frac{7000-\sqrt{48999994}}{3}\approx 0.000142857
Graph
Share
Copied to clipboard
xx+2xx+2=14000x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x^{2}+2xx+2=14000x
Multiply x and x to get x^{2}.
x^{2}+2x^{2}+2=14000x
Multiply x and x to get x^{2}.
3x^{2}+2=14000x
Combine x^{2} and 2x^{2} to get 3x^{2}.
3x^{2}+2-14000x=0
Subtract 14000x from both sides.
3x^{2}-14000x+2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-14000\right)±\sqrt{\left(-14000\right)^{2}-4\times 3\times 2}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -14000 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14000\right)±\sqrt{196000000-4\times 3\times 2}}{2\times 3}
Square -14000.
x=\frac{-\left(-14000\right)±\sqrt{196000000-12\times 2}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-14000\right)±\sqrt{196000000-24}}{2\times 3}
Multiply -12 times 2.
x=\frac{-\left(-14000\right)±\sqrt{195999976}}{2\times 3}
Add 196000000 to -24.
x=\frac{-\left(-14000\right)±2\sqrt{48999994}}{2\times 3}
Take the square root of 195999976.
x=\frac{14000±2\sqrt{48999994}}{2\times 3}
The opposite of -14000 is 14000.
x=\frac{14000±2\sqrt{48999994}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{48999994}+14000}{6}
Now solve the equation x=\frac{14000±2\sqrt{48999994}}{6} when ± is plus. Add 14000 to 2\sqrt{48999994}.
x=\frac{\sqrt{48999994}+7000}{3}
Divide 14000+2\sqrt{48999994} by 6.
x=\frac{14000-2\sqrt{48999994}}{6}
Now solve the equation x=\frac{14000±2\sqrt{48999994}}{6} when ± is minus. Subtract 2\sqrt{48999994} from 14000.
x=\frac{7000-\sqrt{48999994}}{3}
Divide 14000-2\sqrt{48999994} by 6.
x=\frac{\sqrt{48999994}+7000}{3} x=\frac{7000-\sqrt{48999994}}{3}
The equation is now solved.
xx+2xx+2=14000x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x^{2}+2xx+2=14000x
Multiply x and x to get x^{2}.
x^{2}+2x^{2}+2=14000x
Multiply x and x to get x^{2}.
3x^{2}+2=14000x
Combine x^{2} and 2x^{2} to get 3x^{2}.
3x^{2}+2-14000x=0
Subtract 14000x from both sides.
3x^{2}-14000x=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
\frac{3x^{2}-14000x}{3}=-\frac{2}{3}
Divide both sides by 3.
x^{2}-\frac{14000}{3}x=-\frac{2}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{14000}{3}x+\left(-\frac{7000}{3}\right)^{2}=-\frac{2}{3}+\left(-\frac{7000}{3}\right)^{2}
Divide -\frac{14000}{3}, the coefficient of the x term, by 2 to get -\frac{7000}{3}. Then add the square of -\frac{7000}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{14000}{3}x+\frac{49000000}{9}=-\frac{2}{3}+\frac{49000000}{9}
Square -\frac{7000}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{14000}{3}x+\frac{49000000}{9}=\frac{48999994}{9}
Add -\frac{2}{3} to \frac{49000000}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7000}{3}\right)^{2}=\frac{48999994}{9}
Factor x^{2}-\frac{14000}{3}x+\frac{49000000}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7000}{3}\right)^{2}}=\sqrt{\frac{48999994}{9}}
Take the square root of both sides of the equation.
x-\frac{7000}{3}=\frac{\sqrt{48999994}}{3} x-\frac{7000}{3}=-\frac{\sqrt{48999994}}{3}
Simplify.
x=\frac{\sqrt{48999994}+7000}{3} x=\frac{7000-\sqrt{48999994}}{3}
Add \frac{7000}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}