Solve for x
x=8-2\sqrt{2}\approx 5.171572875
Graph
Share
Copied to clipboard
2\sqrt{x-5}=6-x
Subtract x from both sides of the equation.
\left(2\sqrt{x-5}\right)^{2}=\left(6-x\right)^{2}
Square both sides of the equation.
2^{2}\left(\sqrt{x-5}\right)^{2}=\left(6-x\right)^{2}
Expand \left(2\sqrt{x-5}\right)^{2}.
4\left(\sqrt{x-5}\right)^{2}=\left(6-x\right)^{2}
Calculate 2 to the power of 2 and get 4.
4\left(x-5\right)=\left(6-x\right)^{2}
Calculate \sqrt{x-5} to the power of 2 and get x-5.
4x-20=\left(6-x\right)^{2}
Use the distributive property to multiply 4 by x-5.
4x-20=36-12x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6-x\right)^{2}.
4x-20-36=-12x+x^{2}
Subtract 36 from both sides.
4x-56=-12x+x^{2}
Subtract 36 from -20 to get -56.
4x-56+12x=x^{2}
Add 12x to both sides.
16x-56=x^{2}
Combine 4x and 12x to get 16x.
16x-56-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}+16x-56=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-16±\sqrt{16^{2}-4\left(-1\right)\left(-56\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 16 for b, and -56 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\left(-1\right)\left(-56\right)}}{2\left(-1\right)}
Square 16.
x=\frac{-16±\sqrt{256+4\left(-56\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-16±\sqrt{256-224}}{2\left(-1\right)}
Multiply 4 times -56.
x=\frac{-16±\sqrt{32}}{2\left(-1\right)}
Add 256 to -224.
x=\frac{-16±4\sqrt{2}}{2\left(-1\right)}
Take the square root of 32.
x=\frac{-16±4\sqrt{2}}{-2}
Multiply 2 times -1.
x=\frac{4\sqrt{2}-16}{-2}
Now solve the equation x=\frac{-16±4\sqrt{2}}{-2} when ± is plus. Add -16 to 4\sqrt{2}.
x=8-2\sqrt{2}
Divide -16+4\sqrt{2} by -2.
x=\frac{-4\sqrt{2}-16}{-2}
Now solve the equation x=\frac{-16±4\sqrt{2}}{-2} when ± is minus. Subtract 4\sqrt{2} from -16.
x=2\sqrt{2}+8
Divide -16-4\sqrt{2} by -2.
x=8-2\sqrt{2} x=2\sqrt{2}+8
The equation is now solved.
8-2\sqrt{2}+2\sqrt{8-2\sqrt{2}-5}=6
Substitute 8-2\sqrt{2} for x in the equation x+2\sqrt{x-5}=6.
6=6
Simplify. The value x=8-2\sqrt{2} satisfies the equation.
2\sqrt{2}+8+2\sqrt{2\sqrt{2}+8-5}=6
Substitute 2\sqrt{2}+8 for x in the equation x+2\sqrt{x-5}=6.
4\times 2^{\frac{1}{2}}+10=6
Simplify. The value x=2\sqrt{2}+8 does not satisfy the equation.
x=8-2\sqrt{2}
Equation 2\sqrt{x-5}=6-x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}