Solve for x
x=3
Graph
Share
Copied to clipboard
\left(x+2\right)^{2}=\left(\sqrt{4x+13}\right)^{2}
Square both sides of the equation.
x^{2}+4x+4=\left(\sqrt{4x+13}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
x^{2}+4x+4=4x+13
Calculate \sqrt{4x+13} to the power of 2 and get 4x+13.
x^{2}+4x+4-4x=13
Subtract 4x from both sides.
x^{2}+4=13
Combine 4x and -4x to get 0.
x^{2}+4-13=0
Subtract 13 from both sides.
x^{2}-9=0
Subtract 13 from 4 to get -9.
\left(x-3\right)\left(x+3\right)=0
Consider x^{2}-9. Rewrite x^{2}-9 as x^{2}-3^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=3 x=-3
To find equation solutions, solve x-3=0 and x+3=0.
3+2=\sqrt{4\times 3+13}
Substitute 3 for x in the equation x+2=\sqrt{4x+13}.
5=5
Simplify. The value x=3 satisfies the equation.
-3+2=\sqrt{4\left(-3\right)+13}
Substitute -3 for x in the equation x+2=\sqrt{4x+13}.
-1=1
Simplify. The value x=-3 does not satisfy the equation because the left and the right hand side have opposite signs.
x=3
Equation x+2=\sqrt{4x+13} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}