Solve for x
x<-5
Graph
Share
Copied to clipboard
x+2<\frac{1}{2}x+\frac{1}{2}\left(-1\right)
Use the distributive property to multiply \frac{1}{2} by x-1.
x+2<\frac{1}{2}x-\frac{1}{2}
Multiply \frac{1}{2} and -1 to get -\frac{1}{2}.
x+2-\frac{1}{2}x<-\frac{1}{2}
Subtract \frac{1}{2}x from both sides.
\frac{1}{2}x+2<-\frac{1}{2}
Combine x and -\frac{1}{2}x to get \frac{1}{2}x.
\frac{1}{2}x<-\frac{1}{2}-2
Subtract 2 from both sides.
\frac{1}{2}x<-\frac{1}{2}-\frac{4}{2}
Convert 2 to fraction \frac{4}{2}.
\frac{1}{2}x<\frac{-1-4}{2}
Since -\frac{1}{2} and \frac{4}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}x<-\frac{5}{2}
Subtract 4 from -1 to get -5.
x<-\frac{5}{2}\times 2
Multiply both sides by 2, the reciprocal of \frac{1}{2}. Since \frac{1}{2} is positive, the inequality direction remains the same.
x<-5
Cancel out 2 and 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}