Solve for x
x=-2
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Share
Copied to clipboard
6\left(x-2\right)x+6\left(x-2\right)\times 2+6x=\left(x-2\right)\times 3
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by 6\left(x-2\right), the least common multiple of x-2,6.
\left(6x-12\right)x+6\left(x-2\right)\times 2+6x=\left(x-2\right)\times 3
Use the distributive property to multiply 6 by x-2.
6x^{2}-12x+6\left(x-2\right)\times 2+6x=\left(x-2\right)\times 3
Use the distributive property to multiply 6x-12 by x.
6x^{2}-12x+12\left(x-2\right)+6x=\left(x-2\right)\times 3
Multiply 6 and 2 to get 12.
6x^{2}-12x+12x-24+6x=\left(x-2\right)\times 3
Use the distributive property to multiply 12 by x-2.
6x^{2}-24+6x=\left(x-2\right)\times 3
Combine -12x and 12x to get 0.
6x^{2}-24+6x=3x-6
Use the distributive property to multiply x-2 by 3.
6x^{2}-24+6x-3x=-6
Subtract 3x from both sides.
6x^{2}-24+3x=-6
Combine 6x and -3x to get 3x.
6x^{2}-24+3x+6=0
Add 6 to both sides.
6x^{2}-18+3x=0
Add -24 and 6 to get -18.
6x^{2}+3x-18=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}-4\times 6\left(-18\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 3 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 6\left(-18\right)}}{2\times 6}
Square 3.
x=\frac{-3±\sqrt{9-24\left(-18\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-3±\sqrt{9+432}}{2\times 6}
Multiply -24 times -18.
x=\frac{-3±\sqrt{441}}{2\times 6}
Add 9 to 432.
x=\frac{-3±21}{2\times 6}
Take the square root of 441.
x=\frac{-3±21}{12}
Multiply 2 times 6.
x=\frac{18}{12}
Now solve the equation x=\frac{-3±21}{12} when ± is plus. Add -3 to 21.
x=\frac{3}{2}
Reduce the fraction \frac{18}{12} to lowest terms by extracting and canceling out 6.
x=-\frac{24}{12}
Now solve the equation x=\frac{-3±21}{12} when ± is minus. Subtract 21 from -3.
x=-2
Divide -24 by 12.
x=\frac{3}{2} x=-2
The equation is now solved.
6\left(x-2\right)x+6\left(x-2\right)\times 2+6x=\left(x-2\right)\times 3
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by 6\left(x-2\right), the least common multiple of x-2,6.
\left(6x-12\right)x+6\left(x-2\right)\times 2+6x=\left(x-2\right)\times 3
Use the distributive property to multiply 6 by x-2.
6x^{2}-12x+6\left(x-2\right)\times 2+6x=\left(x-2\right)\times 3
Use the distributive property to multiply 6x-12 by x.
6x^{2}-12x+12\left(x-2\right)+6x=\left(x-2\right)\times 3
Multiply 6 and 2 to get 12.
6x^{2}-12x+12x-24+6x=\left(x-2\right)\times 3
Use the distributive property to multiply 12 by x-2.
6x^{2}-24+6x=\left(x-2\right)\times 3
Combine -12x and 12x to get 0.
6x^{2}-24+6x=3x-6
Use the distributive property to multiply x-2 by 3.
6x^{2}-24+6x-3x=-6
Subtract 3x from both sides.
6x^{2}-24+3x=-6
Combine 6x and -3x to get 3x.
6x^{2}+3x=-6+24
Add 24 to both sides.
6x^{2}+3x=18
Add -6 and 24 to get 18.
\frac{6x^{2}+3x}{6}=\frac{18}{6}
Divide both sides by 6.
x^{2}+\frac{3}{6}x=\frac{18}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}+\frac{1}{2}x=\frac{18}{6}
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{1}{2}x=3
Divide 18 by 6.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=3+\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{2}x+\frac{1}{16}=3+\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{49}{16}
Add 3 to \frac{1}{16}.
\left(x+\frac{1}{4}\right)^{2}=\frac{49}{16}
Factor x^{2}+\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Take the square root of both sides of the equation.
x+\frac{1}{4}=\frac{7}{4} x+\frac{1}{4}=-\frac{7}{4}
Simplify.
x=\frac{3}{2} x=-2
Subtract \frac{1}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}