Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+1=x^{2}+14x+49
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+7\right)^{2}.
x+1-x^{2}=14x+49
Subtract x^{2} from both sides.
x+1-x^{2}-14x=49
Subtract 14x from both sides.
-13x+1-x^{2}=49
Combine x and -14x to get -13x.
-13x+1-x^{2}-49=0
Subtract 49 from both sides.
-13x-48-x^{2}=0
Subtract 49 from 1 to get -48.
-x^{2}-13x-48=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\left(-1\right)\left(-48\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -13 for b, and -48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-13\right)±\sqrt{169-4\left(-1\right)\left(-48\right)}}{2\left(-1\right)}
Square -13.
x=\frac{-\left(-13\right)±\sqrt{169+4\left(-48\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-13\right)±\sqrt{169-192}}{2\left(-1\right)}
Multiply 4 times -48.
x=\frac{-\left(-13\right)±\sqrt{-23}}{2\left(-1\right)}
Add 169 to -192.
x=\frac{-\left(-13\right)±\sqrt{23}i}{2\left(-1\right)}
Take the square root of -23.
x=\frac{13±\sqrt{23}i}{2\left(-1\right)}
The opposite of -13 is 13.
x=\frac{13±\sqrt{23}i}{-2}
Multiply 2 times -1.
x=\frac{13+\sqrt{23}i}{-2}
Now solve the equation x=\frac{13±\sqrt{23}i}{-2} when ± is plus. Add 13 to i\sqrt{23}.
x=\frac{-\sqrt{23}i-13}{2}
Divide 13+i\sqrt{23} by -2.
x=\frac{-\sqrt{23}i+13}{-2}
Now solve the equation x=\frac{13±\sqrt{23}i}{-2} when ± is minus. Subtract i\sqrt{23} from 13.
x=\frac{-13+\sqrt{23}i}{2}
Divide 13-i\sqrt{23} by -2.
x=\frac{-\sqrt{23}i-13}{2} x=\frac{-13+\sqrt{23}i}{2}
The equation is now solved.
x+1=x^{2}+14x+49
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+7\right)^{2}.
x+1-x^{2}=14x+49
Subtract x^{2} from both sides.
x+1-x^{2}-14x=49
Subtract 14x from both sides.
-13x+1-x^{2}=49
Combine x and -14x to get -13x.
-13x-x^{2}=49-1
Subtract 1 from both sides.
-13x-x^{2}=48
Subtract 1 from 49 to get 48.
-x^{2}-13x=48
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-13x}{-1}=\frac{48}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{13}{-1}\right)x=\frac{48}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+13x=\frac{48}{-1}
Divide -13 by -1.
x^{2}+13x=-48
Divide 48 by -1.
x^{2}+13x+\left(\frac{13}{2}\right)^{2}=-48+\left(\frac{13}{2}\right)^{2}
Divide 13, the coefficient of the x term, by 2 to get \frac{13}{2}. Then add the square of \frac{13}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+13x+\frac{169}{4}=-48+\frac{169}{4}
Square \frac{13}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+13x+\frac{169}{4}=-\frac{23}{4}
Add -48 to \frac{169}{4}.
\left(x+\frac{13}{2}\right)^{2}=-\frac{23}{4}
Factor x^{2}+13x+\frac{169}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{13}{2}\right)^{2}}=\sqrt{-\frac{23}{4}}
Take the square root of both sides of the equation.
x+\frac{13}{2}=\frac{\sqrt{23}i}{2} x+\frac{13}{2}=-\frac{\sqrt{23}i}{2}
Simplify.
x=\frac{-13+\sqrt{23}i}{2} x=\frac{-\sqrt{23}i-13}{2}
Subtract \frac{13}{2} from both sides of the equation.