Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{1-x^{2}}=\frac{1}{3}-x
Subtract x from both sides of the equation.
\left(\sqrt{1-x^{2}}\right)^{2}=\left(\frac{1}{3}-x\right)^{2}
Square both sides of the equation.
1-x^{2}=\left(\frac{1}{3}-x\right)^{2}
Calculate \sqrt{1-x^{2}} to the power of 2 and get 1-x^{2}.
1-x^{2}=\frac{1}{9}-\frac{2}{3}x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{1}{3}-x\right)^{2}.
1-x^{2}-\frac{1}{9}=-\frac{2}{3}x+x^{2}
Subtract \frac{1}{9} from both sides.
\frac{8}{9}-x^{2}=-\frac{2}{3}x+x^{2}
Subtract \frac{1}{9} from 1 to get \frac{8}{9}.
\frac{8}{9}-x^{2}+\frac{2}{3}x=x^{2}
Add \frac{2}{3}x to both sides.
\frac{8}{9}-x^{2}+\frac{2}{3}x-x^{2}=0
Subtract x^{2} from both sides.
\frac{8}{9}-2x^{2}+\frac{2}{3}x=0
Combine -x^{2} and -x^{2} to get -2x^{2}.
-2x^{2}+\frac{2}{3}x+\frac{8}{9}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{2}{3}±\sqrt{\left(\frac{2}{3}\right)^{2}-4\left(-2\right)\times \frac{8}{9}}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, \frac{2}{3} for b, and \frac{8}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{2}{3}±\sqrt{\frac{4}{9}-4\left(-2\right)\times \frac{8}{9}}}{2\left(-2\right)}
Square \frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{2}{3}±\sqrt{\frac{4}{9}+8\times \frac{8}{9}}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\frac{2}{3}±\sqrt{\frac{4+64}{9}}}{2\left(-2\right)}
Multiply 8 times \frac{8}{9}.
x=\frac{-\frac{2}{3}±\sqrt{\frac{68}{9}}}{2\left(-2\right)}
Add \frac{4}{9} to \frac{64}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{2}{3}±\frac{2\sqrt{17}}{3}}{2\left(-2\right)}
Take the square root of \frac{68}{9}.
x=\frac{-\frac{2}{3}±\frac{2\sqrt{17}}{3}}{-4}
Multiply 2 times -2.
x=\frac{2\sqrt{17}-2}{-4\times 3}
Now solve the equation x=\frac{-\frac{2}{3}±\frac{2\sqrt{17}}{3}}{-4} when ± is plus. Add -\frac{2}{3} to \frac{2\sqrt{17}}{3}.
x=\frac{1-\sqrt{17}}{6}
Divide \frac{-2+2\sqrt{17}}{3} by -4.
x=\frac{-2\sqrt{17}-2}{-4\times 3}
Now solve the equation x=\frac{-\frac{2}{3}±\frac{2\sqrt{17}}{3}}{-4} when ± is minus. Subtract \frac{2\sqrt{17}}{3} from -\frac{2}{3}.
x=\frac{\sqrt{17}+1}{6}
Divide \frac{-2-2\sqrt{17}}{3} by -4.
x=\frac{1-\sqrt{17}}{6} x=\frac{\sqrt{17}+1}{6}
The equation is now solved.
\frac{1-\sqrt{17}}{6}+\sqrt{1-\left(\frac{1-\sqrt{17}}{6}\right)^{2}}=\frac{1}{3}
Substitute \frac{1-\sqrt{17}}{6} for x in the equation x+\sqrt{1-x^{2}}=\frac{1}{3}.
\frac{1}{3}=\frac{1}{3}
Simplify. The value x=\frac{1-\sqrt{17}}{6} satisfies the equation.
\frac{\sqrt{17}+1}{6}+\sqrt{1-\left(\frac{\sqrt{17}+1}{6}\right)^{2}}=\frac{1}{3}
Substitute \frac{\sqrt{17}+1}{6} for x in the equation x+\sqrt{1-x^{2}}=\frac{1}{3}.
\frac{1}{3}\times 17^{\frac{1}{2}}=\frac{1}{3}
Simplify. The value x=\frac{\sqrt{17}+1}{6} does not satisfy the equation.
x=\frac{1-\sqrt{17}}{6}
Equation \sqrt{1-x^{2}}=\frac{1}{3}-x has a unique solution.