Solve for x
x=1
x=8
Graph
Share
Copied to clipboard
xx+8=9x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x^{2}+8=9x
Multiply x and x to get x^{2}.
x^{2}+8-9x=0
Subtract 9x from both sides.
x^{2}-9x+8=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-9 ab=8
To solve the equation, factor x^{2}-9x+8 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,-8 -2,-4
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 8.
-1-8=-9 -2-4=-6
Calculate the sum for each pair.
a=-8 b=-1
The solution is the pair that gives sum -9.
\left(x-8\right)\left(x-1\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=8 x=1
To find equation solutions, solve x-8=0 and x-1=0.
xx+8=9x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x^{2}+8=9x
Multiply x and x to get x^{2}.
x^{2}+8-9x=0
Subtract 9x from both sides.
x^{2}-9x+8=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-9 ab=1\times 8=8
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+8. To find a and b, set up a system to be solved.
-1,-8 -2,-4
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 8.
-1-8=-9 -2-4=-6
Calculate the sum for each pair.
a=-8 b=-1
The solution is the pair that gives sum -9.
\left(x^{2}-8x\right)+\left(-x+8\right)
Rewrite x^{2}-9x+8 as \left(x^{2}-8x\right)+\left(-x+8\right).
x\left(x-8\right)-\left(x-8\right)
Factor out x in the first and -1 in the second group.
\left(x-8\right)\left(x-1\right)
Factor out common term x-8 by using distributive property.
x=8 x=1
To find equation solutions, solve x-8=0 and x-1=0.
xx+8=9x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x^{2}+8=9x
Multiply x and x to get x^{2}.
x^{2}+8-9x=0
Subtract 9x from both sides.
x^{2}-9x+8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 8}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -9 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 8}}{2}
Square -9.
x=\frac{-\left(-9\right)±\sqrt{81-32}}{2}
Multiply -4 times 8.
x=\frac{-\left(-9\right)±\sqrt{49}}{2}
Add 81 to -32.
x=\frac{-\left(-9\right)±7}{2}
Take the square root of 49.
x=\frac{9±7}{2}
The opposite of -9 is 9.
x=\frac{16}{2}
Now solve the equation x=\frac{9±7}{2} when ± is plus. Add 9 to 7.
x=8
Divide 16 by 2.
x=\frac{2}{2}
Now solve the equation x=\frac{9±7}{2} when ± is minus. Subtract 7 from 9.
x=1
Divide 2 by 2.
x=8 x=1
The equation is now solved.
xx+8=9x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x^{2}+8=9x
Multiply x and x to get x^{2}.
x^{2}+8-9x=0
Subtract 9x from both sides.
x^{2}-9x=-8
Subtract 8 from both sides. Anything subtracted from zero gives its negation.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=-8+\left(-\frac{9}{2}\right)^{2}
Divide -9, the coefficient of the x term, by 2 to get -\frac{9}{2}. Then add the square of -\frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-9x+\frac{81}{4}=-8+\frac{81}{4}
Square -\frac{9}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-9x+\frac{81}{4}=\frac{49}{4}
Add -8 to \frac{81}{4}.
\left(x-\frac{9}{2}\right)^{2}=\frac{49}{4}
Factor x^{2}-9x+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Take the square root of both sides of the equation.
x-\frac{9}{2}=\frac{7}{2} x-\frac{9}{2}=-\frac{7}{2}
Simplify.
x=8 x=1
Add \frac{9}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}