Solve for x
x = -\frac{6}{5} = -1\frac{1}{5} = -1.2
Graph
Share
Copied to clipboard
20x+25-10\left(x+1\right)=15-12
Multiply both sides of the equation by 20, the least common multiple of 4,2,5.
20x+25-10x-10=15-12
Use the distributive property to multiply -10 by x+1.
10x+25-10=15-12
Combine 20x and -10x to get 10x.
10x+15=15-12
Subtract 10 from 25 to get 15.
10x+15=3
Subtract 12 from 15 to get 3.
10x=3-15
Subtract 15 from both sides.
10x=-12
Subtract 15 from 3 to get -12.
x=\frac{-12}{10}
Divide both sides by 10.
x=-\frac{6}{5}
Reduce the fraction \frac{-12}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}