Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

xx+4+x\left(-3\right)=ex
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x^{2}+4+x\left(-3\right)=ex
Multiply x and x to get x^{2}.
x^{2}+4+x\left(-3\right)-ex=0
Subtract ex from both sides.
x^{2}-ex-3x+4=0
Reorder the terms.
x^{2}+\left(-e-3\right)x+4=0
Combine all terms containing x.
x=\frac{-\left(-e-3\right)±\sqrt{\left(-e-3\right)^{2}-4\times 4}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -e-3 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-e-3\right)±\sqrt{\left(e+3\right)^{2}-4\times 4}}{2}
Square -e-3.
x=\frac{-\left(-e-3\right)±\sqrt{\left(e+3\right)^{2}-16}}{2}
Multiply -4 times 4.
x=\frac{-\left(-e-3\right)±\sqrt{\left(e-1\right)\left(e+7\right)}}{2}
Add \left(e+3\right)^{2} to -16.
x=\frac{e+3±\sqrt{\left(e-1\right)\left(e+7\right)}}{2}
The opposite of -e-3 is e+3.
x=\frac{\sqrt{\left(e-1\right)\left(e+7\right)}+e+3}{2}
Now solve the equation x=\frac{e+3±\sqrt{\left(e-1\right)\left(e+7\right)}}{2} when ± is plus. Add e+3 to \sqrt{\left(e+7\right)\left(e-1\right)}.
x=\frac{-\sqrt{\left(e-1\right)\left(e+7\right)}+e+3}{2}
Now solve the equation x=\frac{e+3±\sqrt{\left(e-1\right)\left(e+7\right)}}{2} when ± is minus. Subtract \sqrt{\left(e+7\right)\left(e-1\right)} from e+3.
x=\frac{\sqrt{\left(e-1\right)\left(e+7\right)}+e+3}{2} x=\frac{-\sqrt{\left(e-1\right)\left(e+7\right)}+e+3}{2}
The equation is now solved.
x=\frac{-\sqrt{\left(e-1\right)\left(e+7\right)}+e+3}{2}\text{, }x\neq 0 x=\frac{\sqrt{\left(e-1\right)\left(e+7\right)}+e+3}{2}\text{, }x\neq 0
Variable x cannot be equal to 0.
xx+4+x\left(-3\right)=ex
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x^{2}+4+x\left(-3\right)=ex
Multiply x and x to get x^{2}.
x^{2}+4+x\left(-3\right)-ex=0
Subtract ex from both sides.
x^{2}+x\left(-3\right)-ex=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
x^{2}+\left(-3-e\right)x=-4
Combine all terms containing x.
x^{2}+\left(-e-3\right)x=-4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+\left(-e-3\right)x+\left(\frac{-e-3}{2}\right)^{2}=-4+\left(\frac{-e-3}{2}\right)^{2}
Divide -e-3, the coefficient of the x term, by 2 to get \frac{-e-3}{2}. Then add the square of \frac{-e-3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\left(-e-3\right)x+\frac{\left(e+3\right)^{2}}{4}=-4+\frac{\left(e+3\right)^{2}}{4}
Square \frac{-e-3}{2}.
x^{2}+\left(-e-3\right)x+\frac{\left(e+3\right)^{2}}{4}=\frac{\left(e-1\right)\left(e+7\right)}{4}
Add -4 to \frac{\left(e+3\right)^{2}}{4}.
\left(x+\frac{-e-3}{2}\right)^{2}=\frac{\left(e-1\right)\left(e+7\right)}{4}
Factor x^{2}+\left(-e-3\right)x+\frac{\left(e+3\right)^{2}}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{-e-3}{2}\right)^{2}}=\sqrt{\frac{\left(e-1\right)\left(e+7\right)}{4}}
Take the square root of both sides of the equation.
x+\frac{-e-3}{2}=\frac{\sqrt{\left(e-1\right)\left(e+7\right)}}{2} x+\frac{-e-3}{2}=-\frac{\sqrt{\left(e-1\right)\left(e+7\right)}}{2}
Simplify.
x=\frac{\sqrt{\left(e-1\right)\left(e+7\right)}+e+3}{2} x=\frac{-\sqrt{\left(e-1\right)\left(e+7\right)}+e+3}{2}
Subtract \frac{-e-3}{2} from both sides of the equation.
x=\frac{-\sqrt{\left(e-1\right)\left(e+7\right)}+e+3}{2}\text{, }x\neq 0 x=\frac{\sqrt{\left(e-1\right)\left(e+7\right)}+e+3}{2}\text{, }x\neq 0
Variable x cannot be equal to 0.