Solve for x (complex solution)
x=\frac{\sqrt{\left(e-1\right)\left(e+7\right)}+e+3}{2}\approx 4.902345938
x=\frac{-\sqrt{\left(e-1\right)\left(e+7\right)}+e+3}{2}\approx 0.815935891
Solve for x
x=\frac{\sqrt{e^{2}+6e-7}+e+3}{2}\approx 4.902345938
x=\frac{-\sqrt{e^{2}+6e-7}+e+3}{2}\approx 0.815935891
Graph
Share
Copied to clipboard
xx+4+x\left(-3\right)=ex
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x^{2}+4+x\left(-3\right)=ex
Multiply x and x to get x^{2}.
x^{2}+4+x\left(-3\right)-ex=0
Subtract ex from both sides.
x^{2}-ex-3x+4=0
Reorder the terms.
x^{2}+\left(-e-3\right)x+4=0
Combine all terms containing x.
x=\frac{-\left(-e-3\right)±\sqrt{\left(-e-3\right)^{2}-4\times 4}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -e-3 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-e-3\right)±\sqrt{\left(e+3\right)^{2}-4\times 4}}{2}
Square -e-3.
x=\frac{-\left(-e-3\right)±\sqrt{\left(e+3\right)^{2}-16}}{2}
Multiply -4 times 4.
x=\frac{-\left(-e-3\right)±\sqrt{\left(e-1\right)\left(e+7\right)}}{2}
Add \left(e+3\right)^{2} to -16.
x=\frac{e+3±\sqrt{\left(e-1\right)\left(e+7\right)}}{2}
The opposite of -e-3 is e+3.
x=\frac{\sqrt{\left(e-1\right)\left(e+7\right)}+e+3}{2}
Now solve the equation x=\frac{e+3±\sqrt{\left(e-1\right)\left(e+7\right)}}{2} when ± is plus. Add e+3 to \sqrt{\left(e+7\right)\left(e-1\right)}.
x=\frac{-\sqrt{\left(e-1\right)\left(e+7\right)}+e+3}{2}
Now solve the equation x=\frac{e+3±\sqrt{\left(e-1\right)\left(e+7\right)}}{2} when ± is minus. Subtract \sqrt{\left(e+7\right)\left(e-1\right)} from e+3.
x=\frac{\sqrt{\left(e-1\right)\left(e+7\right)}+e+3}{2} x=\frac{-\sqrt{\left(e-1\right)\left(e+7\right)}+e+3}{2}
The equation is now solved.
x=\frac{-\sqrt{\left(e-1\right)\left(e+7\right)}+e+3}{2}\text{, }x\neq 0 x=\frac{\sqrt{\left(e-1\right)\left(e+7\right)}+e+3}{2}\text{, }x\neq 0
Variable x cannot be equal to 0.
xx+4+x\left(-3\right)=ex
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x^{2}+4+x\left(-3\right)=ex
Multiply x and x to get x^{2}.
x^{2}+4+x\left(-3\right)-ex=0
Subtract ex from both sides.
x^{2}+x\left(-3\right)-ex=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
x^{2}+\left(-3-e\right)x=-4
Combine all terms containing x.
x^{2}+\left(-e-3\right)x=-4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+\left(-e-3\right)x+\left(\frac{-e-3}{2}\right)^{2}=-4+\left(\frac{-e-3}{2}\right)^{2}
Divide -e-3, the coefficient of the x term, by 2 to get \frac{-e-3}{2}. Then add the square of \frac{-e-3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\left(-e-3\right)x+\frac{\left(e+3\right)^{2}}{4}=-4+\frac{\left(e+3\right)^{2}}{4}
Square \frac{-e-3}{2}.
x^{2}+\left(-e-3\right)x+\frac{\left(e+3\right)^{2}}{4}=\frac{\left(e-1\right)\left(e+7\right)}{4}
Add -4 to \frac{\left(e+3\right)^{2}}{4}.
\left(x+\frac{-e-3}{2}\right)^{2}=\frac{\left(e-1\right)\left(e+7\right)}{4}
Factor x^{2}+\left(-e-3\right)x+\frac{\left(e+3\right)^{2}}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{-e-3}{2}\right)^{2}}=\sqrt{\frac{\left(e-1\right)\left(e+7\right)}{4}}
Take the square root of both sides of the equation.
x+\frac{-e-3}{2}=\frac{\sqrt{\left(e-1\right)\left(e+7\right)}}{2} x+\frac{-e-3}{2}=-\frac{\sqrt{\left(e-1\right)\left(e+7\right)}}{2}
Simplify.
x=\frac{\sqrt{\left(e-1\right)\left(e+7\right)}+e+3}{2} x=\frac{-\sqrt{\left(e-1\right)\left(e+7\right)}+e+3}{2}
Subtract \frac{-e-3}{2} from both sides of the equation.
x=\frac{-\sqrt{\left(e-1\right)\left(e+7\right)}+e+3}{2}\text{, }x\neq 0 x=\frac{\sqrt{\left(e-1\right)\left(e+7\right)}+e+3}{2}\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}