Solve for x
x=2\sqrt{2}+6\approx 8.828427125
x=6-2\sqrt{2}\approx 3.171572875
Graph
Share
Copied to clipboard
\left(-x+4\right)x+4=\left(-x+4\right)\times 4-x\left(-x+4\right)+\left(-x+4\right)x+\left(-x+4\right)\times 4
Variable x cannot be equal to 4 since division by zero is not defined. Multiply both sides of the equation by -x+4.
-x^{2}+4x+4=\left(-x+4\right)\times 4-x\left(-x+4\right)+\left(-x+4\right)x+\left(-x+4\right)\times 4
Use the distributive property to multiply -x+4 by x.
-x^{2}+4x+4=-4x+16-x\left(-x+4\right)+\left(-x+4\right)x+\left(-x+4\right)\times 4
Use the distributive property to multiply -x+4 by 4.
-x^{2}+4x+4=-4x+16+x^{2}-4x+\left(-x+4\right)x+\left(-x+4\right)\times 4
Use the distributive property to multiply -x by -x+4.
-x^{2}+4x+4=-8x+16+x^{2}+\left(-x+4\right)x+\left(-x+4\right)\times 4
Combine -4x and -4x to get -8x.
-x^{2}+4x+4=-8x+16+x^{2}-x^{2}+4x+\left(-x+4\right)\times 4
Use the distributive property to multiply -x+4 by x.
-x^{2}+4x+4=-8x+16+4x+\left(-x+4\right)\times 4
Combine x^{2} and -x^{2} to get 0.
-x^{2}+4x+4=-4x+16+\left(-x+4\right)\times 4
Combine -8x and 4x to get -4x.
-x^{2}+4x+4=-4x+16-4x+16
Use the distributive property to multiply -x+4 by 4.
-x^{2}+4x+4=-8x+16+16
Combine -4x and -4x to get -8x.
-x^{2}+4x+4=-8x+32
Add 16 and 16 to get 32.
-x^{2}+4x+4+8x=32
Add 8x to both sides.
-x^{2}+12x+4=32
Combine 4x and 8x to get 12x.
-x^{2}+12x+4-32=0
Subtract 32 from both sides.
-x^{2}+12x-28=0
Subtract 32 from 4 to get -28.
x=\frac{-12±\sqrt{12^{2}-4\left(-1\right)\left(-28\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 12 for b, and -28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\left(-1\right)\left(-28\right)}}{2\left(-1\right)}
Square 12.
x=\frac{-12±\sqrt{144+4\left(-28\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-12±\sqrt{144-112}}{2\left(-1\right)}
Multiply 4 times -28.
x=\frac{-12±\sqrt{32}}{2\left(-1\right)}
Add 144 to -112.
x=\frac{-12±4\sqrt{2}}{2\left(-1\right)}
Take the square root of 32.
x=\frac{-12±4\sqrt{2}}{-2}
Multiply 2 times -1.
x=\frac{4\sqrt{2}-12}{-2}
Now solve the equation x=\frac{-12±4\sqrt{2}}{-2} when ± is plus. Add -12 to 4\sqrt{2}.
x=6-2\sqrt{2}
Divide -12+4\sqrt{2} by -2.
x=\frac{-4\sqrt{2}-12}{-2}
Now solve the equation x=\frac{-12±4\sqrt{2}}{-2} when ± is minus. Subtract 4\sqrt{2} from -12.
x=2\sqrt{2}+6
Divide -12-4\sqrt{2} by -2.
x=6-2\sqrt{2} x=2\sqrt{2}+6
The equation is now solved.
\left(-x+4\right)x+4=\left(-x+4\right)\times 4-x\left(-x+4\right)+\left(-x+4\right)x+\left(-x+4\right)\times 4
Variable x cannot be equal to 4 since division by zero is not defined. Multiply both sides of the equation by -x+4.
-x^{2}+4x+4=\left(-x+4\right)\times 4-x\left(-x+4\right)+\left(-x+4\right)x+\left(-x+4\right)\times 4
Use the distributive property to multiply -x+4 by x.
-x^{2}+4x+4=-4x+16-x\left(-x+4\right)+\left(-x+4\right)x+\left(-x+4\right)\times 4
Use the distributive property to multiply -x+4 by 4.
-x^{2}+4x+4=-4x+16+x^{2}-4x+\left(-x+4\right)x+\left(-x+4\right)\times 4
Use the distributive property to multiply -x by -x+4.
-x^{2}+4x+4=-8x+16+x^{2}+\left(-x+4\right)x+\left(-x+4\right)\times 4
Combine -4x and -4x to get -8x.
-x^{2}+4x+4=-8x+16+x^{2}-x^{2}+4x+\left(-x+4\right)\times 4
Use the distributive property to multiply -x+4 by x.
-x^{2}+4x+4=-8x+16+4x+\left(-x+4\right)\times 4
Combine x^{2} and -x^{2} to get 0.
-x^{2}+4x+4=-4x+16+\left(-x+4\right)\times 4
Combine -8x and 4x to get -4x.
-x^{2}+4x+4=-4x+16-4x+16
Use the distributive property to multiply -x+4 by 4.
-x^{2}+4x+4=-8x+16+16
Combine -4x and -4x to get -8x.
-x^{2}+4x+4=-8x+32
Add 16 and 16 to get 32.
-x^{2}+4x+4+8x=32
Add 8x to both sides.
-x^{2}+12x+4=32
Combine 4x and 8x to get 12x.
-x^{2}+12x=32-4
Subtract 4 from both sides.
-x^{2}+12x=28
Subtract 4 from 32 to get 28.
\frac{-x^{2}+12x}{-1}=\frac{28}{-1}
Divide both sides by -1.
x^{2}+\frac{12}{-1}x=\frac{28}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-12x=\frac{28}{-1}
Divide 12 by -1.
x^{2}-12x=-28
Divide 28 by -1.
x^{2}-12x+\left(-6\right)^{2}=-28+\left(-6\right)^{2}
Divide -12, the coefficient of the x term, by 2 to get -6. Then add the square of -6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-12x+36=-28+36
Square -6.
x^{2}-12x+36=8
Add -28 to 36.
\left(x-6\right)^{2}=8
Factor x^{2}-12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{8}
Take the square root of both sides of the equation.
x-6=2\sqrt{2} x-6=-2\sqrt{2}
Simplify.
x=2\sqrt{2}+6 x=6-2\sqrt{2}
Add 6 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}