Solve for x
x = \frac{91}{30} = 3\frac{1}{30} \approx 3.033333333
Graph
Share
Copied to clipboard
\left(x+\frac{3}{5}\right)^{2}=\left(\sqrt{x^{2}+4}\right)^{2}
Square both sides of the equation.
x^{2}+\frac{6}{5}x+\frac{9}{25}=\left(\sqrt{x^{2}+4}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+\frac{3}{5}\right)^{2}.
x^{2}+\frac{6}{5}x+\frac{9}{25}=x^{2}+4
Calculate \sqrt{x^{2}+4} to the power of 2 and get x^{2}+4.
x^{2}+\frac{6}{5}x+\frac{9}{25}-x^{2}=4
Subtract x^{2} from both sides.
\frac{6}{5}x+\frac{9}{25}=4
Combine x^{2} and -x^{2} to get 0.
\frac{6}{5}x=4-\frac{9}{25}
Subtract \frac{9}{25} from both sides.
\frac{6}{5}x=\frac{91}{25}
Subtract \frac{9}{25} from 4 to get \frac{91}{25}.
x=\frac{91}{25}\times \frac{5}{6}
Multiply both sides by \frac{5}{6}, the reciprocal of \frac{6}{5}.
x=\frac{91}{30}
Multiply \frac{91}{25} and \frac{5}{6} to get \frac{91}{30}.
\frac{91}{30}+\frac{3}{5}=\sqrt{\left(\frac{91}{30}\right)^{2}+4}
Substitute \frac{91}{30} for x in the equation x+\frac{3}{5}=\sqrt{x^{2}+4}.
\frac{109}{30}=\frac{109}{30}
Simplify. The value x=\frac{91}{30} satisfies the equation.
x=\frac{91}{30}
Equation x+\frac{3}{5}=\sqrt{x^{2}+4} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}