Solve for x
x=\sqrt{361945}+671\approx 1272.618649977
x=671-\sqrt{361945}\approx 69.381350023
Graph
Share
Copied to clipboard
\left(-x+1266\right)x+120\times 66=76\left(-x+1266\right)
Variable x cannot be equal to 1266 since division by zero is not defined. Multiply both sides of the equation by -x+1266.
-x^{2}+1266x+120\times 66=76\left(-x+1266\right)
Use the distributive property to multiply -x+1266 by x.
-x^{2}+1266x+7920=76\left(-x+1266\right)
Multiply 120 and 66 to get 7920.
-x^{2}+1266x+7920=-76x+96216
Use the distributive property to multiply 76 by -x+1266.
-x^{2}+1266x+7920+76x=96216
Add 76x to both sides.
-x^{2}+1342x+7920=96216
Combine 1266x and 76x to get 1342x.
-x^{2}+1342x+7920-96216=0
Subtract 96216 from both sides.
-x^{2}+1342x-88296=0
Subtract 96216 from 7920 to get -88296.
x=\frac{-1342±\sqrt{1342^{2}-4\left(-1\right)\left(-88296\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 1342 for b, and -88296 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1342±\sqrt{1800964-4\left(-1\right)\left(-88296\right)}}{2\left(-1\right)}
Square 1342.
x=\frac{-1342±\sqrt{1800964+4\left(-88296\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-1342±\sqrt{1800964-353184}}{2\left(-1\right)}
Multiply 4 times -88296.
x=\frac{-1342±\sqrt{1447780}}{2\left(-1\right)}
Add 1800964 to -353184.
x=\frac{-1342±2\sqrt{361945}}{2\left(-1\right)}
Take the square root of 1447780.
x=\frac{-1342±2\sqrt{361945}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{361945}-1342}{-2}
Now solve the equation x=\frac{-1342±2\sqrt{361945}}{-2} when ± is plus. Add -1342 to 2\sqrt{361945}.
x=671-\sqrt{361945}
Divide -1342+2\sqrt{361945} by -2.
x=\frac{-2\sqrt{361945}-1342}{-2}
Now solve the equation x=\frac{-1342±2\sqrt{361945}}{-2} when ± is minus. Subtract 2\sqrt{361945} from -1342.
x=\sqrt{361945}+671
Divide -1342-2\sqrt{361945} by -2.
x=671-\sqrt{361945} x=\sqrt{361945}+671
The equation is now solved.
\left(-x+1266\right)x+120\times 66=76\left(-x+1266\right)
Variable x cannot be equal to 1266 since division by zero is not defined. Multiply both sides of the equation by -x+1266.
-x^{2}+1266x+120\times 66=76\left(-x+1266\right)
Use the distributive property to multiply -x+1266 by x.
-x^{2}+1266x+7920=76\left(-x+1266\right)
Multiply 120 and 66 to get 7920.
-x^{2}+1266x+7920=-76x+96216
Use the distributive property to multiply 76 by -x+1266.
-x^{2}+1266x+7920+76x=96216
Add 76x to both sides.
-x^{2}+1342x+7920=96216
Combine 1266x and 76x to get 1342x.
-x^{2}+1342x=96216-7920
Subtract 7920 from both sides.
-x^{2}+1342x=88296
Subtract 7920 from 96216 to get 88296.
\frac{-x^{2}+1342x}{-1}=\frac{88296}{-1}
Divide both sides by -1.
x^{2}+\frac{1342}{-1}x=\frac{88296}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-1342x=\frac{88296}{-1}
Divide 1342 by -1.
x^{2}-1342x=-88296
Divide 88296 by -1.
x^{2}-1342x+\left(-671\right)^{2}=-88296+\left(-671\right)^{2}
Divide -1342, the coefficient of the x term, by 2 to get -671. Then add the square of -671 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-1342x+450241=-88296+450241
Square -671.
x^{2}-1342x+450241=361945
Add -88296 to 450241.
\left(x-671\right)^{2}=361945
Factor x^{2}-1342x+450241. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-671\right)^{2}}=\sqrt{361945}
Take the square root of both sides of the equation.
x-671=\sqrt{361945} x-671=-\sqrt{361945}
Simplify.
x=\sqrt{361945}+671 x=671-\sqrt{361945}
Add 671 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}