Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-5\right)x+1=7\left(x-5\right)
Variable x cannot be equal to 5 since division by zero is not defined. Multiply both sides of the equation by x-5.
x^{2}-5x+1=7\left(x-5\right)
Use the distributive property to multiply x-5 by x.
x^{2}-5x+1=7x-35
Use the distributive property to multiply 7 by x-5.
x^{2}-5x+1-7x=-35
Subtract 7x from both sides.
x^{2}-12x+1=-35
Combine -5x and -7x to get -12x.
x^{2}-12x+1+35=0
Add 35 to both sides.
x^{2}-12x+36=0
Add 1 and 35 to get 36.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 36}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -12 for b, and 36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 36}}{2}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-144}}{2}
Multiply -4 times 36.
x=\frac{-\left(-12\right)±\sqrt{0}}{2}
Add 144 to -144.
x=-\frac{-12}{2}
Take the square root of 0.
x=\frac{12}{2}
The opposite of -12 is 12.
x=6
Divide 12 by 2.
\left(x-5\right)x+1=7\left(x-5\right)
Variable x cannot be equal to 5 since division by zero is not defined. Multiply both sides of the equation by x-5.
x^{2}-5x+1=7\left(x-5\right)
Use the distributive property to multiply x-5 by x.
x^{2}-5x+1=7x-35
Use the distributive property to multiply 7 by x-5.
x^{2}-5x+1-7x=-35
Subtract 7x from both sides.
x^{2}-12x+1=-35
Combine -5x and -7x to get -12x.
x^{2}-12x=-35-1
Subtract 1 from both sides.
x^{2}-12x=-36
Subtract 1 from -35 to get -36.
x^{2}-12x+\left(-6\right)^{2}=-36+\left(-6\right)^{2}
Divide -12, the coefficient of the x term, by 2 to get -6. Then add the square of -6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-12x+36=-36+36
Square -6.
x^{2}-12x+36=0
Add -36 to 36.
\left(x-6\right)^{2}=0
Factor x^{2}-12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-6=0 x-6=0
Simplify.
x=6 x=6
Add 6 to both sides of the equation.
x=6
The equation is now solved. Solutions are the same.