Solve for x
x = \frac{3 \sqrt{136241} + 1131}{8} \approx 279.790644437
x = \frac{1131 - 3 \sqrt{136241}}{8} \approx 2.959355563
Graph
Share
Copied to clipboard
\frac{5}{4}x=276-x-\frac{1}{3}x\left(276-x\right)
Combine x and \frac{1}{4}x to get \frac{5}{4}x.
\frac{5}{4}x+\frac{1}{3}x\left(276-x\right)=276-x
Add \frac{1}{3}x\left(276-x\right) to both sides.
\frac{5}{4}x+\frac{1}{3}x\times 276+\frac{1}{3}x\left(-1\right)x=276-x
Use the distributive property to multiply \frac{1}{3}x by 276-x.
\frac{5}{4}x+\frac{1}{3}x\times 276+\frac{1}{3}x^{2}\left(-1\right)=276-x
Multiply x and x to get x^{2}.
\frac{5}{4}x+\frac{276}{3}x+\frac{1}{3}x^{2}\left(-1\right)=276-x
Multiply \frac{1}{3} and 276 to get \frac{276}{3}.
\frac{5}{4}x+92x+\frac{1}{3}x^{2}\left(-1\right)=276-x
Divide 276 by 3 to get 92.
\frac{5}{4}x+92x-\frac{1}{3}x^{2}=276-x
Multiply \frac{1}{3} and -1 to get -\frac{1}{3}.
\frac{373}{4}x-\frac{1}{3}x^{2}=276-x
Combine \frac{5}{4}x and 92x to get \frac{373}{4}x.
\frac{373}{4}x-\frac{1}{3}x^{2}-276=-x
Subtract 276 from both sides.
\frac{373}{4}x-\frac{1}{3}x^{2}-276+x=0
Add x to both sides.
\frac{377}{4}x-\frac{1}{3}x^{2}-276=0
Combine \frac{373}{4}x and x to get \frac{377}{4}x.
-\frac{1}{3}x^{2}+\frac{377}{4}x-276=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{377}{4}±\sqrt{\left(\frac{377}{4}\right)^{2}-4\left(-\frac{1}{3}\right)\left(-276\right)}}{2\left(-\frac{1}{3}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{3} for a, \frac{377}{4} for b, and -276 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{377}{4}±\sqrt{\frac{142129}{16}-4\left(-\frac{1}{3}\right)\left(-276\right)}}{2\left(-\frac{1}{3}\right)}
Square \frac{377}{4} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{377}{4}±\sqrt{\frac{142129}{16}+\frac{4}{3}\left(-276\right)}}{2\left(-\frac{1}{3}\right)}
Multiply -4 times -\frac{1}{3}.
x=\frac{-\frac{377}{4}±\sqrt{\frac{142129}{16}-368}}{2\left(-\frac{1}{3}\right)}
Multiply \frac{4}{3} times -276.
x=\frac{-\frac{377}{4}±\sqrt{\frac{136241}{16}}}{2\left(-\frac{1}{3}\right)}
Add \frac{142129}{16} to -368.
x=\frac{-\frac{377}{4}±\frac{\sqrt{136241}}{4}}{2\left(-\frac{1}{3}\right)}
Take the square root of \frac{136241}{16}.
x=\frac{-\frac{377}{4}±\frac{\sqrt{136241}}{4}}{-\frac{2}{3}}
Multiply 2 times -\frac{1}{3}.
x=\frac{\sqrt{136241}-377}{-\frac{2}{3}\times 4}
Now solve the equation x=\frac{-\frac{377}{4}±\frac{\sqrt{136241}}{4}}{-\frac{2}{3}} when ± is plus. Add -\frac{377}{4} to \frac{\sqrt{136241}}{4}.
x=\frac{1131-3\sqrt{136241}}{8}
Divide \frac{-377+\sqrt{136241}}{4} by -\frac{2}{3} by multiplying \frac{-377+\sqrt{136241}}{4} by the reciprocal of -\frac{2}{3}.
x=\frac{-\sqrt{136241}-377}{-\frac{2}{3}\times 4}
Now solve the equation x=\frac{-\frac{377}{4}±\frac{\sqrt{136241}}{4}}{-\frac{2}{3}} when ± is minus. Subtract \frac{\sqrt{136241}}{4} from -\frac{377}{4}.
x=\frac{3\sqrt{136241}+1131}{8}
Divide \frac{-377-\sqrt{136241}}{4} by -\frac{2}{3} by multiplying \frac{-377-\sqrt{136241}}{4} by the reciprocal of -\frac{2}{3}.
x=\frac{1131-3\sqrt{136241}}{8} x=\frac{3\sqrt{136241}+1131}{8}
The equation is now solved.
\frac{5}{4}x=276-x-\frac{1}{3}x\left(276-x\right)
Combine x and \frac{1}{4}x to get \frac{5}{4}x.
\frac{5}{4}x+\frac{1}{3}x\left(276-x\right)=276-x
Add \frac{1}{3}x\left(276-x\right) to both sides.
\frac{5}{4}x+\frac{1}{3}x\times 276+\frac{1}{3}x\left(-1\right)x=276-x
Use the distributive property to multiply \frac{1}{3}x by 276-x.
\frac{5}{4}x+\frac{1}{3}x\times 276+\frac{1}{3}x^{2}\left(-1\right)=276-x
Multiply x and x to get x^{2}.
\frac{5}{4}x+\frac{276}{3}x+\frac{1}{3}x^{2}\left(-1\right)=276-x
Multiply \frac{1}{3} and 276 to get \frac{276}{3}.
\frac{5}{4}x+92x+\frac{1}{3}x^{2}\left(-1\right)=276-x
Divide 276 by 3 to get 92.
\frac{5}{4}x+92x-\frac{1}{3}x^{2}=276-x
Multiply \frac{1}{3} and -1 to get -\frac{1}{3}.
\frac{373}{4}x-\frac{1}{3}x^{2}=276-x
Combine \frac{5}{4}x and 92x to get \frac{373}{4}x.
\frac{373}{4}x-\frac{1}{3}x^{2}+x=276
Add x to both sides.
\frac{377}{4}x-\frac{1}{3}x^{2}=276
Combine \frac{373}{4}x and x to get \frac{377}{4}x.
-\frac{1}{3}x^{2}+\frac{377}{4}x=276
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{1}{3}x^{2}+\frac{377}{4}x}{-\frac{1}{3}}=\frac{276}{-\frac{1}{3}}
Multiply both sides by -3.
x^{2}+\frac{\frac{377}{4}}{-\frac{1}{3}}x=\frac{276}{-\frac{1}{3}}
Dividing by -\frac{1}{3} undoes the multiplication by -\frac{1}{3}.
x^{2}-\frac{1131}{4}x=\frac{276}{-\frac{1}{3}}
Divide \frac{377}{4} by -\frac{1}{3} by multiplying \frac{377}{4} by the reciprocal of -\frac{1}{3}.
x^{2}-\frac{1131}{4}x=-828
Divide 276 by -\frac{1}{3} by multiplying 276 by the reciprocal of -\frac{1}{3}.
x^{2}-\frac{1131}{4}x+\left(-\frac{1131}{8}\right)^{2}=-828+\left(-\frac{1131}{8}\right)^{2}
Divide -\frac{1131}{4}, the coefficient of the x term, by 2 to get -\frac{1131}{8}. Then add the square of -\frac{1131}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1131}{4}x+\frac{1279161}{64}=-828+\frac{1279161}{64}
Square -\frac{1131}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1131}{4}x+\frac{1279161}{64}=\frac{1226169}{64}
Add -828 to \frac{1279161}{64}.
\left(x-\frac{1131}{8}\right)^{2}=\frac{1226169}{64}
Factor x^{2}-\frac{1131}{4}x+\frac{1279161}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1131}{8}\right)^{2}}=\sqrt{\frac{1226169}{64}}
Take the square root of both sides of the equation.
x-\frac{1131}{8}=\frac{3\sqrt{136241}}{8} x-\frac{1131}{8}=-\frac{3\sqrt{136241}}{8}
Simplify.
x=\frac{3\sqrt{136241}+1131}{8} x=\frac{1131-3\sqrt{136241}}{8}
Add \frac{1131}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}