Solve for x (complex solution)
x=-\frac{\sqrt{y}}{9}+\frac{1}{5}
Solve for x
x=-\frac{\sqrt{y}}{9}+\frac{1}{5}
y\geq 0
Solve for y
y=\frac{81\left(1-5x\right)^{2}}{25}
\frac{9}{5}-9x\geq 0
Solve for y (complex solution)
y=\frac{81\left(1-5x\right)^{2}}{25}
x=\frac{1}{5}\text{ or }arg(\frac{9}{5}-9x)<\pi
Graph
Share
Copied to clipboard
45x+5\sqrt{y}=9
Multiply both sides of the equation by 45, the least common multiple of 9,5.
45x=9-5\sqrt{y}
Subtract 5\sqrt{y} from both sides.
45x=-5\sqrt{y}+9
The equation is in standard form.
\frac{45x}{45}=\frac{-5\sqrt{y}+9}{45}
Divide both sides by 45.
x=\frac{-5\sqrt{y}+9}{45}
Dividing by 45 undoes the multiplication by 45.
x=-\frac{\sqrt{y}}{9}+\frac{1}{5}
Divide 9-5\sqrt{y} by 45.
45x+5\sqrt{y}=9
Multiply both sides of the equation by 45, the least common multiple of 9,5.
45x=9-5\sqrt{y}
Subtract 5\sqrt{y} from both sides.
45x=-5\sqrt{y}+9
The equation is in standard form.
\frac{45x}{45}=\frac{-5\sqrt{y}+9}{45}
Divide both sides by 45.
x=\frac{-5\sqrt{y}+9}{45}
Dividing by 45 undoes the multiplication by 45.
x=-\frac{\sqrt{y}}{9}+\frac{1}{5}
Divide 9-5\sqrt{y} by 45.
\frac{1}{9}\sqrt{y}+x-x=\frac{1}{5}-x
Subtract x from both sides of the equation.
\frac{1}{9}\sqrt{y}=\frac{1}{5}-x
Subtracting x from itself leaves 0.
\frac{\frac{1}{9}\sqrt{y}}{\frac{1}{9}}=\frac{\frac{1}{5}-x}{\frac{1}{9}}
Multiply both sides by 9.
\sqrt{y}=\frac{\frac{1}{5}-x}{\frac{1}{9}}
Dividing by \frac{1}{9} undoes the multiplication by \frac{1}{9}.
\sqrt{y}=\frac{9}{5}-9x
Divide \frac{1}{5}-x by \frac{1}{9} by multiplying \frac{1}{5}-x by the reciprocal of \frac{1}{9}.
y=\frac{81\left(1-5x\right)^{2}}{25}
Square both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}