Solve for x
x=-\frac{\sqrt{30}}{2}+1\approx -1.738612788
Graph
Share
Copied to clipboard
x+\frac{\sqrt{5}}{\sqrt{\frac{6}{9}}}=1
Add 2 and 3 to get 5.
x+\frac{\sqrt{5}}{\sqrt{\frac{2}{3}}}=1
Reduce the fraction \frac{6}{9} to lowest terms by extracting and canceling out 3.
x+\frac{\sqrt{5}}{\frac{\sqrt{2}}{\sqrt{3}}}=1
Rewrite the square root of the division \sqrt{\frac{2}{3}} as the division of square roots \frac{\sqrt{2}}{\sqrt{3}}.
x+\frac{\sqrt{5}}{\frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}=1
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
x+\frac{\sqrt{5}}{\frac{\sqrt{2}\sqrt{3}}{3}}=1
The square of \sqrt{3} is 3.
x+\frac{\sqrt{5}}{\frac{\sqrt{6}}{3}}=1
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
x+\frac{\sqrt{5}\times 3}{\sqrt{6}}=1
Divide \sqrt{5} by \frac{\sqrt{6}}{3} by multiplying \sqrt{5} by the reciprocal of \frac{\sqrt{6}}{3}.
x+\frac{\sqrt{5}\times 3\sqrt{6}}{\left(\sqrt{6}\right)^{2}}=1
Rationalize the denominator of \frac{\sqrt{5}\times 3}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
x+\frac{\sqrt{5}\times 3\sqrt{6}}{6}=1
The square of \sqrt{6} is 6.
x+\frac{\sqrt{30}\times 3}{6}=1
To multiply \sqrt{5} and \sqrt{6}, multiply the numbers under the square root.
x+\sqrt{30}\times \frac{1}{2}=1
Divide \sqrt{30}\times 3 by 6 to get \sqrt{30}\times \frac{1}{2}.
x=1-\sqrt{30}\times \frac{1}{2}
Subtract \sqrt{30}\times \frac{1}{2} from both sides.
x=1-\frac{1}{2}\sqrt{30}
Multiply -1 and \frac{1}{2} to get -\frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}