Solve for f (complex solution)
\left\{\begin{matrix}f=-\frac{\left(1-x\right)\left(2x-1\right)}{wx\left(x+3\right)}\text{, }&x\neq -3\text{ and }x\neq 0\text{ and }w\neq 0\\f\in \mathrm{C}\text{, }&\left(x=\frac{1}{2}\text{ or }x=1\right)\text{ and }w=0\end{matrix}\right.
Solve for w (complex solution)
\left\{\begin{matrix}w=-\frac{\left(1-x\right)\left(2x-1\right)}{fx\left(x+3\right)}\text{, }&x\neq -3\text{ and }x\neq 0\text{ and }f\neq 0\\w\in \mathrm{C}\text{, }&\left(x=\frac{1}{2}\text{ or }x=1\right)\text{ and }f=0\end{matrix}\right.
Solve for f
\left\{\begin{matrix}f=-\frac{\left(1-x\right)\left(2x-1\right)}{wx\left(x+3\right)}\text{, }&x\neq -3\text{ and }x\neq 0\text{ and }w\neq 0\\f\in \mathrm{R}\text{, }&\left(x=\frac{1}{2}\text{ or }x=1\right)\text{ and }w=0\end{matrix}\right.
Solve for w
\left\{\begin{matrix}w=-\frac{\left(1-x\right)\left(2x-1\right)}{fx\left(x+3\right)}\text{, }&x\neq -3\text{ and }x\neq 0\text{ and }f\neq 0\\w\in \mathrm{R}\text{, }&\left(x=\frac{1}{2}\text{ or }x=1\right)\text{ and }f=0\end{matrix}\right.
Graph
Share
Copied to clipboard
wfx\left(x+3\right)=2x^{2}-3x+1
Multiply both sides of the equation by x+3.
wfx^{2}+3wfx=2x^{2}-3x+1
Use the distributive property to multiply wfx by x+3.
\left(wx^{2}+3wx\right)f=2x^{2}-3x+1
Combine all terms containing f.
\frac{\left(wx^{2}+3wx\right)f}{wx^{2}+3wx}=\frac{\left(x-1\right)\left(2x-1\right)}{wx^{2}+3wx}
Divide both sides by wx^{2}+3wx.
f=\frac{\left(x-1\right)\left(2x-1\right)}{wx^{2}+3wx}
Dividing by wx^{2}+3wx undoes the multiplication by wx^{2}+3wx.
f=\frac{\left(x-1\right)\left(2x-1\right)}{wx\left(x+3\right)}
Divide \left(-1+x\right)\left(-1+2x\right) by wx^{2}+3wx.
wfx\left(x+3\right)=2x^{2}-3x+1
Multiply both sides of the equation by x+3.
wfx^{2}+3wfx=2x^{2}-3x+1
Use the distributive property to multiply wfx by x+3.
\left(fx^{2}+3fx\right)w=2x^{2}-3x+1
Combine all terms containing w.
\frac{\left(fx^{2}+3fx\right)w}{fx^{2}+3fx}=\frac{\left(x-1\right)\left(2x-1\right)}{fx^{2}+3fx}
Divide both sides by 3xf+fx^{2}.
w=\frac{\left(x-1\right)\left(2x-1\right)}{fx^{2}+3fx}
Dividing by 3xf+fx^{2} undoes the multiplication by 3xf+fx^{2}.
w=\frac{\left(x-1\right)\left(2x-1\right)}{fx\left(x+3\right)}
Divide \left(-1+x\right)\left(-1+2x\right) by 3xf+fx^{2}.
wfx\left(x+3\right)=2x^{2}-3x+1
Multiply both sides of the equation by x+3.
wfx^{2}+3wfx=2x^{2}-3x+1
Use the distributive property to multiply wfx by x+3.
\left(wx^{2}+3wx\right)f=2x^{2}-3x+1
Combine all terms containing f.
\frac{\left(wx^{2}+3wx\right)f}{wx^{2}+3wx}=\frac{\left(x-1\right)\left(2x-1\right)}{wx^{2}+3wx}
Divide both sides by wx^{2}+3wx.
f=\frac{\left(x-1\right)\left(2x-1\right)}{wx^{2}+3wx}
Dividing by wx^{2}+3wx undoes the multiplication by wx^{2}+3wx.
f=\frac{\left(x-1\right)\left(2x-1\right)}{wx\left(x+3\right)}
Divide \left(-1+x\right)\left(-1+2x\right) by wx^{2}+3wx.
wfx\left(x+3\right)=2x^{2}-3x+1
Multiply both sides of the equation by x+3.
wfx^{2}+3wfx=2x^{2}-3x+1
Use the distributive property to multiply wfx by x+3.
\left(fx^{2}+3fx\right)w=2x^{2}-3x+1
Combine all terms containing w.
\frac{\left(fx^{2}+3fx\right)w}{fx^{2}+3fx}=\frac{\left(x-1\right)\left(2x-1\right)}{fx^{2}+3fx}
Divide both sides by 3xf+fx^{2}.
w=\frac{\left(x-1\right)\left(2x-1\right)}{fx^{2}+3fx}
Dividing by 3xf+fx^{2} undoes the multiplication by 3xf+fx^{2}.
w=\frac{\left(x-1\right)\left(2x-1\right)}{fx\left(x+3\right)}
Divide \left(-1+x\right)\left(-1+2x\right) by 3xf+fx^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}