Skip to main content
Solve for f (complex solution)
Tick mark Image
Solve for w (complex solution)
Tick mark Image
Solve for f
Tick mark Image
Solve for w
Tick mark Image
Graph

Similar Problems from Web Search

Share

wfx\left(x+3\right)=2x^{2}-3x+1
Multiply both sides of the equation by x+3.
wfx^{2}+3wfx=2x^{2}-3x+1
Use the distributive property to multiply wfx by x+3.
\left(wx^{2}+3wx\right)f=2x^{2}-3x+1
Combine all terms containing f.
\frac{\left(wx^{2}+3wx\right)f}{wx^{2}+3wx}=\frac{\left(x-1\right)\left(2x-1\right)}{wx^{2}+3wx}
Divide both sides by wx^{2}+3wx.
f=\frac{\left(x-1\right)\left(2x-1\right)}{wx^{2}+3wx}
Dividing by wx^{2}+3wx undoes the multiplication by wx^{2}+3wx.
f=\frac{\left(x-1\right)\left(2x-1\right)}{wx\left(x+3\right)}
Divide \left(-1+x\right)\left(-1+2x\right) by wx^{2}+3wx.
wfx\left(x+3\right)=2x^{2}-3x+1
Multiply both sides of the equation by x+3.
wfx^{2}+3wfx=2x^{2}-3x+1
Use the distributive property to multiply wfx by x+3.
\left(fx^{2}+3fx\right)w=2x^{2}-3x+1
Combine all terms containing w.
\frac{\left(fx^{2}+3fx\right)w}{fx^{2}+3fx}=\frac{\left(x-1\right)\left(2x-1\right)}{fx^{2}+3fx}
Divide both sides by 3xf+fx^{2}.
w=\frac{\left(x-1\right)\left(2x-1\right)}{fx^{2}+3fx}
Dividing by 3xf+fx^{2} undoes the multiplication by 3xf+fx^{2}.
w=\frac{\left(x-1\right)\left(2x-1\right)}{fx\left(x+3\right)}
Divide \left(-1+x\right)\left(-1+2x\right) by 3xf+fx^{2}.
wfx\left(x+3\right)=2x^{2}-3x+1
Multiply both sides of the equation by x+3.
wfx^{2}+3wfx=2x^{2}-3x+1
Use the distributive property to multiply wfx by x+3.
\left(wx^{2}+3wx\right)f=2x^{2}-3x+1
Combine all terms containing f.
\frac{\left(wx^{2}+3wx\right)f}{wx^{2}+3wx}=\frac{\left(x-1\right)\left(2x-1\right)}{wx^{2}+3wx}
Divide both sides by wx^{2}+3wx.
f=\frac{\left(x-1\right)\left(2x-1\right)}{wx^{2}+3wx}
Dividing by wx^{2}+3wx undoes the multiplication by wx^{2}+3wx.
f=\frac{\left(x-1\right)\left(2x-1\right)}{wx\left(x+3\right)}
Divide \left(-1+x\right)\left(-1+2x\right) by wx^{2}+3wx.
wfx\left(x+3\right)=2x^{2}-3x+1
Multiply both sides of the equation by x+3.
wfx^{2}+3wfx=2x^{2}-3x+1
Use the distributive property to multiply wfx by x+3.
\left(fx^{2}+3fx\right)w=2x^{2}-3x+1
Combine all terms containing w.
\frac{\left(fx^{2}+3fx\right)w}{fx^{2}+3fx}=\frac{\left(x-1\right)\left(2x-1\right)}{fx^{2}+3fx}
Divide both sides by 3xf+fx^{2}.
w=\frac{\left(x-1\right)\left(2x-1\right)}{fx^{2}+3fx}
Dividing by 3xf+fx^{2} undoes the multiplication by 3xf+fx^{2}.
w=\frac{\left(x-1\right)\left(2x-1\right)}{fx\left(x+3\right)}
Divide \left(-1+x\right)\left(-1+2x\right) by 3xf+fx^{2}.