Solve for f (complex solution)
\left\{\begin{matrix}f=\frac{x+3}{w\left(x^{2}-1\right)}\text{, }&x\neq -1\text{ and }x\neq 1\text{ and }w\neq 0\\f\in \mathrm{C}\text{, }&x=0\text{ or }\left(x=-3\text{ and }w=0\right)\end{matrix}\right.
Solve for w (complex solution)
\left\{\begin{matrix}w=\frac{x+3}{f\left(x^{2}-1\right)}\text{, }&x\neq -1\text{ and }x\neq 1\text{ and }f\neq 0\\w\in \mathrm{C}\text{, }&x=0\text{ or }\left(x=-3\text{ and }f=0\right)\end{matrix}\right.
Solve for f
\left\{\begin{matrix}f=\frac{x+3}{w\left(x^{2}-1\right)}\text{, }&w\neq 0\text{ and }|x|\neq 1\\f\in \mathrm{R}\text{, }&x=0\text{ or }\left(x=-3\text{ and }w=0\right)\end{matrix}\right.
Solve for w
\left\{\begin{matrix}w=\frac{x+3}{f\left(x^{2}-1\right)}\text{, }&f\neq 0\text{ and }|x|\neq 1\\w\in \mathrm{R}\text{, }&x=0\text{ or }\left(x=-3\text{ and }f=0\right)\end{matrix}\right.
Graph
Quiz
Linear Equation
5 problems similar to:
w \cdot f ( x ) = \frac { x ^ { 2 } + 3 x } { x ^ { 2 } - 1 }
Share
Copied to clipboard
wfx\left(x-1\right)\left(x+1\right)=x^{2}+3x
Multiply both sides of the equation by \left(x-1\right)\left(x+1\right).
\left(wfx^{2}-wfx\right)\left(x+1\right)=x^{2}+3x
Use the distributive property to multiply wfx by x-1.
wfx^{3}-wfx=x^{2}+3x
Use the distributive property to multiply wfx^{2}-wfx by x+1 and combine like terms.
\left(wx^{3}-wx\right)f=x^{2}+3x
Combine all terms containing f.
\frac{\left(wx^{3}-wx\right)f}{wx^{3}-wx}=\frac{x\left(x+3\right)}{wx^{3}-wx}
Divide both sides by wx^{3}-wx.
f=\frac{x\left(x+3\right)}{wx^{3}-wx}
Dividing by wx^{3}-wx undoes the multiplication by wx^{3}-wx.
f=\frac{x+3}{w\left(x^{2}-1\right)}
Divide x\left(3+x\right) by wx^{3}-wx.
wfx\left(x-1\right)\left(x+1\right)=x^{2}+3x
Multiply both sides of the equation by \left(x-1\right)\left(x+1\right).
\left(wfx^{2}-wfx\right)\left(x+1\right)=x^{2}+3x
Use the distributive property to multiply wfx by x-1.
wfx^{3}-wfx=x^{2}+3x
Use the distributive property to multiply wfx^{2}-wfx by x+1 and combine like terms.
\left(fx^{3}-fx\right)w=x^{2}+3x
Combine all terms containing w.
\frac{\left(fx^{3}-fx\right)w}{fx^{3}-fx}=\frac{x\left(x+3\right)}{fx^{3}-fx}
Divide both sides by fx^{3}-fx.
w=\frac{x\left(x+3\right)}{fx^{3}-fx}
Dividing by fx^{3}-fx undoes the multiplication by fx^{3}-fx.
w=\frac{x+3}{f\left(x^{2}-1\right)}
Divide x\left(3+x\right) by fx^{3}-fx.
wfx\left(x-1\right)\left(x+1\right)=x^{2}+3x
Multiply both sides of the equation by \left(x-1\right)\left(x+1\right).
\left(wfx^{2}-wfx\right)\left(x+1\right)=x^{2}+3x
Use the distributive property to multiply wfx by x-1.
wfx^{3}-wfx=x^{2}+3x
Use the distributive property to multiply wfx^{2}-wfx by x+1 and combine like terms.
\left(wx^{3}-wx\right)f=x^{2}+3x
Combine all terms containing f.
\frac{\left(wx^{3}-wx\right)f}{wx^{3}-wx}=\frac{x\left(x+3\right)}{wx^{3}-wx}
Divide both sides by wx^{3}-wx.
f=\frac{x\left(x+3\right)}{wx^{3}-wx}
Dividing by wx^{3}-wx undoes the multiplication by wx^{3}-wx.
f=\frac{x+3}{w\left(x^{2}-1\right)}
Divide x\left(3+x\right) by wx^{3}-wx.
wfx\left(x-1\right)\left(x+1\right)=x^{2}+3x
Multiply both sides of the equation by \left(x-1\right)\left(x+1\right).
\left(wfx^{2}-wfx\right)\left(x+1\right)=x^{2}+3x
Use the distributive property to multiply wfx by x-1.
wfx^{3}-wfx=x^{2}+3x
Use the distributive property to multiply wfx^{2}-wfx by x+1 and combine like terms.
\left(fx^{3}-fx\right)w=x^{2}+3x
Combine all terms containing w.
\frac{\left(fx^{3}-fx\right)w}{fx^{3}-fx}=\frac{x\left(x+3\right)}{fx^{3}-fx}
Divide both sides by fx^{3}-fx.
w=\frac{x\left(x+3\right)}{fx^{3}-fx}
Dividing by fx^{3}-fx undoes the multiplication by fx^{3}-fx.
w=\frac{x+3}{f\left(x^{2}-1\right)}
Divide x\left(3+x\right) by fx^{3}-fx.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}