Factor
\left(w-2\right)\left(w+2\right)\left(w^{2}-2w+4\right)\left(w^{2}+2w+4\right)
Evaluate
\left(w^{2}-4\right)\left(\left(w^{2}+4\right)^{2}-4w^{2}\right)
Share
Copied to clipboard
\left(w^{3}-8\right)\left(w^{3}+8\right)
Rewrite w^{6}-64 as \left(w^{3}\right)^{2}-8^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(w-2\right)\left(w^{2}+2w+4\right)
Consider w^{3}-8. Rewrite w^{3}-8 as w^{3}-2^{3}. The difference of cubes can be factored using the rule: a^{3}-b^{3}=\left(a-b\right)\left(a^{2}+ab+b^{2}\right).
\left(w+2\right)\left(w^{2}-2w+4\right)
Consider w^{3}+8. Rewrite w^{3}+8 as w^{3}+2^{3}. The sum of cubes can be factored using the rule: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(w-2\right)\left(w+2\right)\left(w^{2}-2w+4\right)\left(w^{2}+2w+4\right)
Rewrite the complete factored expression. The following polynomials are not factored since they do not have any rational roots: w^{2}-2w+4,w^{2}+2w+4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}