Factor
\left(w-7\right)\left(w-6\right)w^{3}
Evaluate
\left(w-7\right)\left(w-6\right)w^{3}
Share
Copied to clipboard
w^{3}\left(w^{2}-13w+42\right)
Factor out w^{3}.
a+b=-13 ab=1\times 42=42
Consider w^{2}-13w+42. Factor the expression by grouping. First, the expression needs to be rewritten as w^{2}+aw+bw+42. To find a and b, set up a system to be solved.
-1,-42 -2,-21 -3,-14 -6,-7
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 42.
-1-42=-43 -2-21=-23 -3-14=-17 -6-7=-13
Calculate the sum for each pair.
a=-7 b=-6
The solution is the pair that gives sum -13.
\left(w^{2}-7w\right)+\left(-6w+42\right)
Rewrite w^{2}-13w+42 as \left(w^{2}-7w\right)+\left(-6w+42\right).
w\left(w-7\right)-6\left(w-7\right)
Factor out w in the first and -6 in the second group.
\left(w-7\right)\left(w-6\right)
Factor out common term w-7 by using distributive property.
w^{3}\left(w-7\right)\left(w-6\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}