Solve for w (complex solution)
w=\frac{\sqrt{-2\sqrt{49w_{0}^{4}+w_{1}^{4}+22\left(w_{0}w_{1}\right)^{2}}-2w_{1}^{2}-14w_{0}^{2}}}{2}
w=-\frac{\sqrt{-2\sqrt{49w_{0}^{4}+w_{1}^{4}+22\left(w_{0}w_{1}\right)^{2}}-2w_{1}^{2}-14w_{0}^{2}}}{2}
w=-\frac{\sqrt{2\sqrt{49w_{0}^{4}+w_{1}^{4}+22\left(w_{0}w_{1}\right)^{2}}-2w_{1}^{2}-14w_{0}^{2}}}{2}
w=\frac{\sqrt{2\sqrt{49w_{0}^{4}+w_{1}^{4}+22\left(w_{0}w_{1}\right)^{2}}-2w_{1}^{2}-14w_{0}^{2}}}{2}
Solve for w_0 (complex solution)
\left\{\begin{matrix}w_{0}=-i\left(7w^{2}-2w_{1}^{2}\right)^{-\frac{1}{2}}w\sqrt{w^{2}+w_{1}^{2}}\text{; }w_{0}=i\left(7w^{2}-2w_{1}^{2}\right)^{-\frac{1}{2}}w\sqrt{w^{2}+w_{1}^{2}}\text{, }&w\neq -\frac{\sqrt{14}w_{1}}{7}\text{ and }w\neq \frac{\sqrt{14}w_{1}}{7}\\w_{0}\in \mathrm{C}\text{, }&w=0\text{ and }w_{1}=0\end{matrix}\right.
Solve for w
\left\{\begin{matrix}\\w=-\frac{\sqrt{2\left(\sqrt{49w_{0}^{4}+w_{1}^{4}+22\left(w_{0}w_{1}\right)^{2}}-7w_{0}^{2}-w_{1}^{2}\right)}}{2}\text{; }w=\frac{\sqrt{2\left(\sqrt{49w_{0}^{4}+w_{1}^{4}+22\left(w_{0}w_{1}\right)^{2}}-7w_{0}^{2}-w_{1}^{2}\right)}}{2}\text{, }&\text{unconditionally}\\w=0\text{, }&w_{1}=0\text{ and }w_{0}=0\end{matrix}\right.
Solve for w_0
\left\{\begin{matrix}w_{0}=\sqrt{-\frac{w^{2}\left(w^{2}+w_{1}^{2}\right)}{7w^{2}-2w_{1}^{2}}}\text{; }w_{0}=-\sqrt{-\frac{w^{2}\left(w^{2}+w_{1}^{2}\right)}{7w^{2}-2w_{1}^{2}}}\text{, }&|w|<\frac{\sqrt{14}|w_{1}|}{7}\\w_{0}\in \mathrm{R}\text{, }&w=0\text{ and }w_{1}=0\end{matrix}\right.
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}