Factor
w\left(w-6\right)\left(w+2\right)
Evaluate
w\left(w-6\right)\left(w+2\right)
Share
Copied to clipboard
w\left(w^{2}-4w-12\right)
Factor out w.
a+b=-4 ab=1\left(-12\right)=-12
Consider w^{2}-4w-12. Factor the expression by grouping. First, the expression needs to be rewritten as w^{2}+aw+bw-12. To find a and b, set up a system to be solved.
1,-12 2,-6 3,-4
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -12.
1-12=-11 2-6=-4 3-4=-1
Calculate the sum for each pair.
a=-6 b=2
The solution is the pair that gives sum -4.
\left(w^{2}-6w\right)+\left(2w-12\right)
Rewrite w^{2}-4w-12 as \left(w^{2}-6w\right)+\left(2w-12\right).
w\left(w-6\right)+2\left(w-6\right)
Factor out w in the first and 2 in the second group.
\left(w-6\right)\left(w+2\right)
Factor out common term w-6 by using distributive property.
w\left(w-6\right)\left(w+2\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}