Skip to main content
Solve for w
Tick mark Image

Similar Problems from Web Search

Share

w^{2}-5w=3
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
w^{2}-5w-3=3-3
Subtract 3 from both sides of the equation.
w^{2}-5w-3=0
Subtracting 3 from itself leaves 0.
w=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-3\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -5 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-\left(-5\right)±\sqrt{25-4\left(-3\right)}}{2}
Square -5.
w=\frac{-\left(-5\right)±\sqrt{25+12}}{2}
Multiply -4 times -3.
w=\frac{-\left(-5\right)±\sqrt{37}}{2}
Add 25 to 12.
w=\frac{5±\sqrt{37}}{2}
The opposite of -5 is 5.
w=\frac{\sqrt{37}+5}{2}
Now solve the equation w=\frac{5±\sqrt{37}}{2} when ± is plus. Add 5 to \sqrt{37}.
w=\frac{5-\sqrt{37}}{2}
Now solve the equation w=\frac{5±\sqrt{37}}{2} when ± is minus. Subtract \sqrt{37} from 5.
w=\frac{\sqrt{37}+5}{2} w=\frac{5-\sqrt{37}}{2}
The equation is now solved.
w^{2}-5w=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
w^{2}-5w+\left(-\frac{5}{2}\right)^{2}=3+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
w^{2}-5w+\frac{25}{4}=3+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
w^{2}-5w+\frac{25}{4}=\frac{37}{4}
Add 3 to \frac{25}{4}.
\left(w-\frac{5}{2}\right)^{2}=\frac{37}{4}
Factor w^{2}-5w+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w-\frac{5}{2}\right)^{2}}=\sqrt{\frac{37}{4}}
Take the square root of both sides of the equation.
w-\frac{5}{2}=\frac{\sqrt{37}}{2} w-\frac{5}{2}=-\frac{\sqrt{37}}{2}
Simplify.
w=\frac{\sqrt{37}+5}{2} w=\frac{5-\sqrt{37}}{2}
Add \frac{5}{2} to both sides of the equation.