Solve for P
\left\{\begin{matrix}P=\frac{w}{V_{1}-V_{2}}\text{, }&V_{2}\neq V_{1}\\P\in \mathrm{R}\text{, }&w=0\text{ and }V_{2}=V_{1}\end{matrix}\right.
Solve for V_1
\left\{\begin{matrix}V_{1}=V_{2}+\frac{w}{P}\text{, }&P\neq 0\\V_{1}\in \mathrm{R}\text{, }&w=0\text{ and }P=0\end{matrix}\right.
Share
Copied to clipboard
w=\left(-P\right)V_{2}-\left(-P\right)V_{1}
Use the distributive property to multiply -P by V_{2}-V_{1}.
w=\left(-P\right)V_{2}+PV_{1}
Multiply -1 and -1 to get 1.
\left(-P\right)V_{2}+PV_{1}=w
Swap sides so that all variable terms are on the left hand side.
PV_{1}-PV_{2}=w
Reorder the terms.
\left(V_{1}-V_{2}\right)P=w
Combine all terms containing P.
\frac{\left(V_{1}-V_{2}\right)P}{V_{1}-V_{2}}=\frac{w}{V_{1}-V_{2}}
Divide both sides by -V_{2}+V_{1}.
P=\frac{w}{V_{1}-V_{2}}
Dividing by -V_{2}+V_{1} undoes the multiplication by -V_{2}+V_{1}.
w=\left(-P\right)V_{2}-\left(-P\right)V_{1}
Use the distributive property to multiply -P by V_{2}-V_{1}.
w=\left(-P\right)V_{2}+PV_{1}
Multiply -1 and -1 to get 1.
\left(-P\right)V_{2}+PV_{1}=w
Swap sides so that all variable terms are on the left hand side.
PV_{1}=w-\left(-P\right)V_{2}
Subtract \left(-P\right)V_{2} from both sides.
PV_{1}=w+PV_{2}
Multiply -1 and -1 to get 1.
\frac{PV_{1}}{P}=\frac{w+PV_{2}}{P}
Divide both sides by P.
V_{1}=\frac{w+PV_{2}}{P}
Dividing by P undoes the multiplication by P.
V_{1}=V_{2}+\frac{w}{P}
Divide V_{2}P+w by P.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}