Solve for k
k=1-3w^{2}
w\geq 0
Solve for w
w=\frac{\sqrt{3-3k}}{3}
k\leq 1
Share
Copied to clipboard
w=\sqrt{\frac{1}{3}-\frac{1}{3}k}
Divide each term of 1-k by 3 to get \frac{1}{3}-\frac{1}{3}k.
\sqrt{\frac{1}{3}-\frac{1}{3}k}=w
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{3}k+\frac{1}{3}=w^{2}
Square both sides of the equation.
-\frac{1}{3}k+\frac{1}{3}-\frac{1}{3}=w^{2}-\frac{1}{3}
Subtract \frac{1}{3} from both sides of the equation.
-\frac{1}{3}k=w^{2}-\frac{1}{3}
Subtracting \frac{1}{3} from itself leaves 0.
\frac{-\frac{1}{3}k}{-\frac{1}{3}}=\frac{w^{2}-\frac{1}{3}}{-\frac{1}{3}}
Multiply both sides by -3.
k=\frac{w^{2}-\frac{1}{3}}{-\frac{1}{3}}
Dividing by -\frac{1}{3} undoes the multiplication by -\frac{1}{3}.
k=1-3w^{2}
Divide w^{2}-\frac{1}{3} by -\frac{1}{3} by multiplying w^{2}-\frac{1}{3} by the reciprocal of -\frac{1}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}