Solve for u
u=\frac{\sqrt{3\left(\tan(w)+6v\right)}}{3}
u=-\frac{\sqrt{3\left(\tan(w)+6v\right)}}{3}\text{, }\exists n_{2}\in \mathrm{Z}\text{ : }\left(w\geq -\arctan(6v)+\pi n_{2}\text{ and }w\leq \frac{\pi \left(2n_{2}+1\right)}{2}\right)\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }w=\frac{\pi \left(2n_{1}+1\right)}{2}\text{ and }|w|\leq \frac{\pi }{2}
Solve for v
v=\frac{-\tan(w)+3u^{2}}{6}
\nexists n_{1}\in \mathrm{Z}\text{ : }w=\pi n_{1}+\frac{\pi }{2}\text{ and }|w|\leq \frac{\pi }{2}
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}