Solve for x
x=y-z+8w
Solve for w
w=\frac{x-y+z}{8}
Share
Copied to clipboard
w=\frac{1}{8}x-\frac{1}{8}y+\frac{1}{8}z
Divide each term of x-y+z by 8 to get \frac{1}{8}x-\frac{1}{8}y+\frac{1}{8}z.
\frac{1}{8}x-\frac{1}{8}y+\frac{1}{8}z=w
Swap sides so that all variable terms are on the left hand side.
\frac{1}{8}x+\frac{1}{8}z=w+\frac{1}{8}y
Add \frac{1}{8}y to both sides.
\frac{1}{8}x=w+\frac{1}{8}y-\frac{1}{8}z
Subtract \frac{1}{8}z from both sides.
\frac{1}{8}x=\frac{y}{8}-\frac{z}{8}+w
The equation is in standard form.
\frac{\frac{1}{8}x}{\frac{1}{8}}=\frac{\frac{y}{8}-\frac{z}{8}+w}{\frac{1}{8}}
Multiply both sides by 8.
x=\frac{\frac{y}{8}-\frac{z}{8}+w}{\frac{1}{8}}
Dividing by \frac{1}{8} undoes the multiplication by \frac{1}{8}.
x=y-z+8w
Divide w+\frac{y}{8}-\frac{z}{8} by \frac{1}{8} by multiplying w+\frac{y}{8}-\frac{z}{8} by the reciprocal of \frac{1}{8}.
w=\frac{1}{8}x-\frac{1}{8}y+\frac{1}{8}z
Divide each term of x-y+z by 8 to get \frac{1}{8}x-\frac{1}{8}y+\frac{1}{8}z.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}