Solve for a
\left\{\begin{matrix}a=\frac{2h+1}{2w}\text{, }&h\neq -\frac{1}{2}\text{ and }w\neq 0\\a\neq 0\text{, }&h=-\frac{1}{2}\text{ and }w=0\end{matrix}\right.
Solve for h
h=aw-\frac{1}{2}
a\neq 0
Share
Copied to clipboard
w\times 2a=1+2h
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2a, the least common multiple of 2a,a.
2aw=2h+1
Reorder the terms.
2wa=2h+1
The equation is in standard form.
\frac{2wa}{2w}=\frac{2h+1}{2w}
Divide both sides by 2w.
a=\frac{2h+1}{2w}
Dividing by 2w undoes the multiplication by 2w.
a=\frac{h+\frac{1}{2}}{w}
Divide 2h+1 by 2w.
a=\frac{h+\frac{1}{2}}{w}\text{, }a\neq 0
Variable a cannot be equal to 0.
w\times 2a=1+2h
Multiply both sides of the equation by 2a, the least common multiple of 2a,a.
1+2h=w\times 2a
Swap sides so that all variable terms are on the left hand side.
2h=w\times 2a-1
Subtract 1 from both sides.
2h=2aw-1
The equation is in standard form.
\frac{2h}{2}=\frac{2aw-1}{2}
Divide both sides by 2.
h=\frac{2aw-1}{2}
Dividing by 2 undoes the multiplication by 2.
h=aw-\frac{1}{2}
Divide 2wa-1 by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}