Skip to main content
Solve for m (complex solution)
Tick mark Image
Solve for m
Tick mark Image
Solve for v_1 (complex solution)
Tick mark Image
Solve for v_1
Tick mark Image

Similar Problems from Web Search

Share

w=\frac{1}{2}mv_{2}^{2}-\frac{1}{2}v_{1}^{2}m
Use the distributive property to multiply \frac{1}{2}m by v_{2}^{2}-v_{1}^{2}.
\frac{1}{2}mv_{2}^{2}-\frac{1}{2}v_{1}^{2}m=w
Swap sides so that all variable terms are on the left hand side.
\left(\frac{1}{2}v_{2}^{2}-\frac{1}{2}v_{1}^{2}\right)m=w
Combine all terms containing m.
\frac{v_{2}^{2}-v_{1}^{2}}{2}m=w
The equation is in standard form.
\frac{2\times \frac{v_{2}^{2}-v_{1}^{2}}{2}m}{v_{2}^{2}-v_{1}^{2}}=\frac{2w}{v_{2}^{2}-v_{1}^{2}}
Divide both sides by \frac{1}{2}v_{2}^{2}-\frac{1}{2}v_{1}^{2}.
m=\frac{2w}{v_{2}^{2}-v_{1}^{2}}
Dividing by \frac{1}{2}v_{2}^{2}-\frac{1}{2}v_{1}^{2} undoes the multiplication by \frac{1}{2}v_{2}^{2}-\frac{1}{2}v_{1}^{2}.
w=\frac{1}{2}mv_{2}^{2}-\frac{1}{2}v_{1}^{2}m
Use the distributive property to multiply \frac{1}{2}m by v_{2}^{2}-v_{1}^{2}.
\frac{1}{2}mv_{2}^{2}-\frac{1}{2}v_{1}^{2}m=w
Swap sides so that all variable terms are on the left hand side.
\left(\frac{1}{2}v_{2}^{2}-\frac{1}{2}v_{1}^{2}\right)m=w
Combine all terms containing m.
\frac{v_{2}^{2}-v_{1}^{2}}{2}m=w
The equation is in standard form.
\frac{2\times \frac{v_{2}^{2}-v_{1}^{2}}{2}m}{v_{2}^{2}-v_{1}^{2}}=\frac{2w}{v_{2}^{2}-v_{1}^{2}}
Divide both sides by \frac{1}{2}v_{2}^{2}-\frac{1}{2}v_{1}^{2}.
m=\frac{2w}{v_{2}^{2}-v_{1}^{2}}
Dividing by \frac{1}{2}v_{2}^{2}-\frac{1}{2}v_{1}^{2} undoes the multiplication by \frac{1}{2}v_{2}^{2}-\frac{1}{2}v_{1}^{2}.