Solve for m (complex solution)
\left\{\begin{matrix}m=\frac{2w}{v_{2}^{2}-v_{1}^{2}}\text{, }&v_{2}\neq v_{1}\text{ and }v_{2}\neq -v_{1}\\m\in \mathrm{C}\text{, }&\left(v_{2}=-v_{1}\text{ or }v_{2}=v_{1}\right)\text{ and }w=0\end{matrix}\right.
Solve for m
\left\{\begin{matrix}m=\frac{2w}{v_{2}^{2}-v_{1}^{2}}\text{, }&|v_{2}|\neq |v_{1}|\\m\in \mathrm{R}\text{, }&w=0\text{ and }|v_{2}|=|v_{1}|\end{matrix}\right.
Solve for v_1 (complex solution)
\left\{\begin{matrix}v_{1}=-\sqrt{v_{2}^{2}-\frac{2w}{m}}\text{; }v_{1}=\sqrt{v_{2}^{2}-\frac{2w}{m}}\text{, }&m\neq 0\\v_{1}\in \mathrm{C}\text{, }&w=0\text{ and }m=0\end{matrix}\right.
Solve for v_1
\left\{\begin{matrix}v_{1}=\sqrt{v_{2}^{2}-\frac{2w}{m}}\text{; }v_{1}=-\sqrt{v_{2}^{2}-\frac{2w}{m}}\text{, }&\left(m>0\text{ or }w\geq \frac{mv_{2}^{2}}{2}\right)\text{ and }\left(m<0\text{ or }w\leq \frac{mv_{2}^{2}}{2}\right)\text{ and }m\neq 0\\v_{1}\in \mathrm{R}\text{, }&w=0\text{ and }m=0\end{matrix}\right.
Share
Copied to clipboard
w=\frac{1}{2}mv_{2}^{2}-\frac{1}{2}v_{1}^{2}m
Use the distributive property to multiply \frac{1}{2}m by v_{2}^{2}-v_{1}^{2}.
\frac{1}{2}mv_{2}^{2}-\frac{1}{2}v_{1}^{2}m=w
Swap sides so that all variable terms are on the left hand side.
\left(\frac{1}{2}v_{2}^{2}-\frac{1}{2}v_{1}^{2}\right)m=w
Combine all terms containing m.
\frac{v_{2}^{2}-v_{1}^{2}}{2}m=w
The equation is in standard form.
\frac{2\times \frac{v_{2}^{2}-v_{1}^{2}}{2}m}{v_{2}^{2}-v_{1}^{2}}=\frac{2w}{v_{2}^{2}-v_{1}^{2}}
Divide both sides by \frac{1}{2}v_{2}^{2}-\frac{1}{2}v_{1}^{2}.
m=\frac{2w}{v_{2}^{2}-v_{1}^{2}}
Dividing by \frac{1}{2}v_{2}^{2}-\frac{1}{2}v_{1}^{2} undoes the multiplication by \frac{1}{2}v_{2}^{2}-\frac{1}{2}v_{1}^{2}.
w=\frac{1}{2}mv_{2}^{2}-\frac{1}{2}v_{1}^{2}m
Use the distributive property to multiply \frac{1}{2}m by v_{2}^{2}-v_{1}^{2}.
\frac{1}{2}mv_{2}^{2}-\frac{1}{2}v_{1}^{2}m=w
Swap sides so that all variable terms are on the left hand side.
\left(\frac{1}{2}v_{2}^{2}-\frac{1}{2}v_{1}^{2}\right)m=w
Combine all terms containing m.
\frac{v_{2}^{2}-v_{1}^{2}}{2}m=w
The equation is in standard form.
\frac{2\times \frac{v_{2}^{2}-v_{1}^{2}}{2}m}{v_{2}^{2}-v_{1}^{2}}=\frac{2w}{v_{2}^{2}-v_{1}^{2}}
Divide both sides by \frac{1}{2}v_{2}^{2}-\frac{1}{2}v_{1}^{2}.
m=\frac{2w}{v_{2}^{2}-v_{1}^{2}}
Dividing by \frac{1}{2}v_{2}^{2}-\frac{1}{2}v_{1}^{2} undoes the multiplication by \frac{1}{2}v_{2}^{2}-\frac{1}{2}v_{1}^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}