Solve for x
x=2w+z-y
Solve for w
w=\frac{x+y-z}{2}
Share
Copied to clipboard
w=\frac{1}{2}x+\frac{1}{2}y-\frac{1}{2}z
Use the distributive property to multiply \frac{1}{2} by x+y-z.
\frac{1}{2}x+\frac{1}{2}y-\frac{1}{2}z=w
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}x-\frac{1}{2}z=w-\frac{1}{2}y
Subtract \frac{1}{2}y from both sides.
\frac{1}{2}x=w-\frac{1}{2}y+\frac{1}{2}z
Add \frac{1}{2}z to both sides.
\frac{1}{2}x=\frac{z}{2}-\frac{y}{2}+w
The equation is in standard form.
\frac{\frac{1}{2}x}{\frac{1}{2}}=\frac{\frac{z}{2}-\frac{y}{2}+w}{\frac{1}{2}}
Multiply both sides by 2.
x=\frac{\frac{z}{2}-\frac{y}{2}+w}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x=2w+z-y
Divide w-\frac{y}{2}+\frac{z}{2} by \frac{1}{2} by multiplying w-\frac{y}{2}+\frac{z}{2} by the reciprocal of \frac{1}{2}.
w=\frac{1}{2}x+\frac{1}{2}y-\frac{1}{2}z
Use the distributive property to multiply \frac{1}{2} by x+y-z.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}