Skip to main content
Solve for x
Tick mark Image
Solve for w
Tick mark Image

Similar Problems from Web Search

Share

w=\frac{1}{2}x+\frac{1}{2}y-\frac{1}{2}z
Use the distributive property to multiply \frac{1}{2} by x+y-z.
\frac{1}{2}x+\frac{1}{2}y-\frac{1}{2}z=w
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}x-\frac{1}{2}z=w-\frac{1}{2}y
Subtract \frac{1}{2}y from both sides.
\frac{1}{2}x=w-\frac{1}{2}y+\frac{1}{2}z
Add \frac{1}{2}z to both sides.
\frac{1}{2}x=\frac{z}{2}-\frac{y}{2}+w
The equation is in standard form.
\frac{\frac{1}{2}x}{\frac{1}{2}}=\frac{\frac{z}{2}-\frac{y}{2}+w}{\frac{1}{2}}
Multiply both sides by 2.
x=\frac{\frac{z}{2}-\frac{y}{2}+w}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x=2w+z-y
Divide w-\frac{y}{2}+\frac{z}{2} by \frac{1}{2} by multiplying w-\frac{y}{2}+\frac{z}{2} by the reciprocal of \frac{1}{2}.
w=\frac{1}{2}x+\frac{1}{2}y-\frac{1}{2}z
Use the distributive property to multiply \frac{1}{2} by x+y-z.