Solve for x
x\neq 0
w=0\text{ and }-4±\left(-1536\right)=0
Solve for w
w=\frac{-4±\left(-1536\right)}{2x}
x\neq 0
Graph
Share
Copied to clipboard
w\times 2x=-4±4\sqrt{16}\left(-96\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x.
w\times 2x=-4±4\times 4\left(-96\right)
Calculate the square root of 16 and get 4.
w\times 2x=-4±16\left(-96\right)
Multiply 4 and 4 to get 16.
w\times 2x=-4±\left(-1536\right)
Multiply 16 and -96 to get -1536.
2wx=-4±\left(-1536\right)
The equation is in standard form.
\frac{2wx}{2w}=\frac{-4±\left(-1536\right)}{2w}
Divide both sides by 2w.
x=\frac{-4±\left(-1536\right)}{2w}
Dividing by 2w undoes the multiplication by 2w.
x=\frac{-4±\left(-1536\right)}{2w}\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}