Solve for v
\left\{\begin{matrix}v=\frac{20x\Delta }{f^{2}+1}\text{, }&f\neq -i\text{ and }f\neq i\\v\in \mathrm{C}\text{, }&\left(x=0\text{ and }f=i\right)\text{ or }\left(x=0\text{ and }f=-i\right)\text{ or }\left(\Delta =0\text{ and }f=i\right)\text{ or }\left(\Delta =0\text{ and }f=-i\right)\end{matrix}\right.
Solve for f
\left\{\begin{matrix}f=-\sqrt{\frac{20x\Delta }{v}-1}\text{; }f=\sqrt{\frac{20x\Delta }{v}-1}\text{, }&v\neq 0\\f\in \mathrm{C}\text{, }&\left(x=0\text{ or }\Delta =0\right)\text{ and }v=0\end{matrix}\right.
Share
Copied to clipboard
vf^{2}=v\left(-1\right)+20\Delta x
Calculate i to the power of 2 and get -1.
vf^{2}-v\left(-1\right)=20\Delta x
Subtract v\left(-1\right) from both sides.
vf^{2}+v=20\Delta x
Multiply -1 and -1 to get 1.
\left(f^{2}+1\right)v=20\Delta x
Combine all terms containing v.
\left(f^{2}+1\right)v=20x\Delta
The equation is in standard form.
\frac{\left(f^{2}+1\right)v}{f^{2}+1}=\frac{20x\Delta }{f^{2}+1}
Divide both sides by f^{2}+1.
v=\frac{20x\Delta }{f^{2}+1}
Dividing by f^{2}+1 undoes the multiplication by f^{2}+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}