v d x + ( x + y ^ { 2 } ) d y = 0
Solve for d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&\left(x=0\text{ and }y=0\right)\text{ or }\left(v=-\frac{y\left(x+y^{2}\right)}{x}\text{ and }x\neq 0\right)\end{matrix}\right.
Solve for v
\left\{\begin{matrix}v=-\frac{y\left(x+y^{2}\right)}{x}\text{, }&x\neq 0\\v\in \mathrm{R}\text{, }&d=0\text{ or }\left(x=0\text{ and }y=0\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
vdx+\left(xd+y^{2}d\right)y=0
Use the distributive property to multiply x+y^{2} by d.
vdx+xdy+dy^{3}=0
Use the distributive property to multiply xd+y^{2}d by y.
\left(vx+xy+y^{3}\right)d=0
Combine all terms containing d.
d=0
Divide 0 by vx+xy+y^{3}.
vdx+\left(xd+y^{2}d\right)y=0
Use the distributive property to multiply x+y^{2} by d.
vdx+xdy+dy^{3}=0
Use the distributive property to multiply xd+y^{2}d by y.
vdx+dy^{3}=-xdy
Subtract xdy from both sides. Anything subtracted from zero gives its negation.
vdx=-xdy-dy^{3}
Subtract dy^{3} from both sides.
dvx=-dxy-dy^{3}
Reorder the terms.
dxv=-dxy-dy^{3}
The equation is in standard form.
\frac{dxv}{dx}=-\frac{dy\left(x+y^{2}\right)}{dx}
Divide both sides by dx.
v=-\frac{dy\left(x+y^{2}\right)}{dx}
Dividing by dx undoes the multiplication by dx.
v=-\frac{y\left(x+y^{2}\right)}{x}
Divide -dy\left(x+y^{2}\right) by dx.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}