Solve for v
v=4
v=2
Share
Copied to clipboard
\left(v-2\right)^{2}=\left(\sqrt{2v-4}\right)^{2}
Square both sides of the equation.
v^{2}-4v+4=\left(\sqrt{2v-4}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(v-2\right)^{2}.
v^{2}-4v+4=2v-4
Calculate \sqrt{2v-4} to the power of 2 and get 2v-4.
v^{2}-4v+4-2v=-4
Subtract 2v from both sides.
v^{2}-6v+4=-4
Combine -4v and -2v to get -6v.
v^{2}-6v+4+4=0
Add 4 to both sides.
v^{2}-6v+8=0
Add 4 and 4 to get 8.
a+b=-6 ab=8
To solve the equation, factor v^{2}-6v+8 using formula v^{2}+\left(a+b\right)v+ab=\left(v+a\right)\left(v+b\right). To find a and b, set up a system to be solved.
-1,-8 -2,-4
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 8.
-1-8=-9 -2-4=-6
Calculate the sum for each pair.
a=-4 b=-2
The solution is the pair that gives sum -6.
\left(v-4\right)\left(v-2\right)
Rewrite factored expression \left(v+a\right)\left(v+b\right) using the obtained values.
v=4 v=2
To find equation solutions, solve v-4=0 and v-2=0.
4-2=\sqrt{2\times 4-4}
Substitute 4 for v in the equation v-2=\sqrt{2v-4}.
2=2
Simplify. The value v=4 satisfies the equation.
2-2=\sqrt{2\times 2-4}
Substitute 2 for v in the equation v-2=\sqrt{2v-4}.
0=0
Simplify. The value v=2 satisfies the equation.
v=4 v=2
List all solutions of v-2=\sqrt{2v-4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}