Solve for v
v=\sqrt{149}+2\approx 14.206555616
v=2-\sqrt{149}\approx -10.206555616
Share
Copied to clipboard
v^{2}-4v-155=-10
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
v^{2}-4v-155-\left(-10\right)=-10-\left(-10\right)
Add 10 to both sides of the equation.
v^{2}-4v-155-\left(-10\right)=0
Subtracting -10 from itself leaves 0.
v^{2}-4v-145=0
Subtract -10 from -155.
v=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-145\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and -145 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{-\left(-4\right)±\sqrt{16-4\left(-145\right)}}{2}
Square -4.
v=\frac{-\left(-4\right)±\sqrt{16+580}}{2}
Multiply -4 times -145.
v=\frac{-\left(-4\right)±\sqrt{596}}{2}
Add 16 to 580.
v=\frac{-\left(-4\right)±2\sqrt{149}}{2}
Take the square root of 596.
v=\frac{4±2\sqrt{149}}{2}
The opposite of -4 is 4.
v=\frac{2\sqrt{149}+4}{2}
Now solve the equation v=\frac{4±2\sqrt{149}}{2} when ± is plus. Add 4 to 2\sqrt{149}.
v=\sqrt{149}+2
Divide 4+2\sqrt{149} by 2.
v=\frac{4-2\sqrt{149}}{2}
Now solve the equation v=\frac{4±2\sqrt{149}}{2} when ± is minus. Subtract 2\sqrt{149} from 4.
v=2-\sqrt{149}
Divide 4-2\sqrt{149} by 2.
v=\sqrt{149}+2 v=2-\sqrt{149}
The equation is now solved.
v^{2}-4v-155=-10
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
v^{2}-4v-155-\left(-155\right)=-10-\left(-155\right)
Add 155 to both sides of the equation.
v^{2}-4v=-10-\left(-155\right)
Subtracting -155 from itself leaves 0.
v^{2}-4v=145
Subtract -155 from -10.
v^{2}-4v+\left(-2\right)^{2}=145+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
v^{2}-4v+4=145+4
Square -2.
v^{2}-4v+4=149
Add 145 to 4.
\left(v-2\right)^{2}=149
Factor v^{2}-4v+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(v-2\right)^{2}}=\sqrt{149}
Take the square root of both sides of the equation.
v-2=\sqrt{149} v-2=-\sqrt{149}
Simplify.
v=\sqrt{149}+2 v=2-\sqrt{149}
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}