Skip to main content
Solve for v
Tick mark Image

Similar Problems from Web Search

Share

a+b=-3 ab=-28
To solve the equation, factor v^{2}-3v-28 using formula v^{2}+\left(a+b\right)v+ab=\left(v+a\right)\left(v+b\right). To find a and b, set up a system to be solved.
1,-28 2,-14 4,-7
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -28.
1-28=-27 2-14=-12 4-7=-3
Calculate the sum for each pair.
a=-7 b=4
The solution is the pair that gives sum -3.
\left(v-7\right)\left(v+4\right)
Rewrite factored expression \left(v+a\right)\left(v+b\right) using the obtained values.
v=7 v=-4
To find equation solutions, solve v-7=0 and v+4=0.
a+b=-3 ab=1\left(-28\right)=-28
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as v^{2}+av+bv-28. To find a and b, set up a system to be solved.
1,-28 2,-14 4,-7
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -28.
1-28=-27 2-14=-12 4-7=-3
Calculate the sum for each pair.
a=-7 b=4
The solution is the pair that gives sum -3.
\left(v^{2}-7v\right)+\left(4v-28\right)
Rewrite v^{2}-3v-28 as \left(v^{2}-7v\right)+\left(4v-28\right).
v\left(v-7\right)+4\left(v-7\right)
Factor out v in the first and 4 in the second group.
\left(v-7\right)\left(v+4\right)
Factor out common term v-7 by using distributive property.
v=7 v=-4
To find equation solutions, solve v-7=0 and v+4=0.
v^{2}-3v-28=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
v=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-28\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -3 for b, and -28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{-\left(-3\right)±\sqrt{9-4\left(-28\right)}}{2}
Square -3.
v=\frac{-\left(-3\right)±\sqrt{9+112}}{2}
Multiply -4 times -28.
v=\frac{-\left(-3\right)±\sqrt{121}}{2}
Add 9 to 112.
v=\frac{-\left(-3\right)±11}{2}
Take the square root of 121.
v=\frac{3±11}{2}
The opposite of -3 is 3.
v=\frac{14}{2}
Now solve the equation v=\frac{3±11}{2} when ± is plus. Add 3 to 11.
v=7
Divide 14 by 2.
v=-\frac{8}{2}
Now solve the equation v=\frac{3±11}{2} when ± is minus. Subtract 11 from 3.
v=-4
Divide -8 by 2.
v=7 v=-4
The equation is now solved.
v^{2}-3v-28=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
v^{2}-3v-28-\left(-28\right)=-\left(-28\right)
Add 28 to both sides of the equation.
v^{2}-3v=-\left(-28\right)
Subtracting -28 from itself leaves 0.
v^{2}-3v=28
Subtract -28 from 0.
v^{2}-3v+\left(-\frac{3}{2}\right)^{2}=28+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
v^{2}-3v+\frac{9}{4}=28+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
v^{2}-3v+\frac{9}{4}=\frac{121}{4}
Add 28 to \frac{9}{4}.
\left(v-\frac{3}{2}\right)^{2}=\frac{121}{4}
Factor v^{2}-3v+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(v-\frac{3}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Take the square root of both sides of the equation.
v-\frac{3}{2}=\frac{11}{2} v-\frac{3}{2}=-\frac{11}{2}
Simplify.
v=7 v=-4
Add \frac{3}{2} to both sides of the equation.
x ^ 2 -3x -28 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 3 rs = -28
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{3}{2} - u s = \frac{3}{2} + u
Two numbers r and s sum up to 3 exactly when the average of the two numbers is \frac{1}{2}*3 = \frac{3}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{3}{2} - u) (\frac{3}{2} + u) = -28
To solve for unknown quantity u, substitute these in the product equation rs = -28
\frac{9}{4} - u^2 = -28
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -28-\frac{9}{4} = -\frac{121}{4}
Simplify the expression by subtracting \frac{9}{4} on both sides
u^2 = \frac{121}{4} u = \pm\sqrt{\frac{121}{4}} = \pm \frac{11}{2}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{3}{2} - \frac{11}{2} = -4 s = \frac{3}{2} + \frac{11}{2} = 7
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.