Skip to main content
Solve for v
Tick mark Image

Similar Problems from Web Search

Share

v^{2}=0.8\left(1.25+1.5\right)
Multiply 2 and 0.4 to get 0.8.
v^{2}=0.8\times 2.75
Add 1.25 and 1.5 to get 2.75.
v^{2}=2.2
Multiply 0.8 and 2.75 to get 2.2.
v=\frac{\sqrt{55}}{5} v=-\frac{\sqrt{55}}{5}
Take the square root of both sides of the equation.
v^{2}=0.8\left(1.25+1.5\right)
Multiply 2 and 0.4 to get 0.8.
v^{2}=0.8\times 2.75
Add 1.25 and 1.5 to get 2.75.
v^{2}=2.2
Multiply 0.8 and 2.75 to get 2.2.
v^{2}-2.2=0
Subtract 2.2 from both sides.
v=\frac{0±\sqrt{0^{2}-4\left(-2.2\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -2.2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{0±\sqrt{-4\left(-2.2\right)}}{2}
Square 0.
v=\frac{0±\sqrt{8.8}}{2}
Multiply -4 times -2.2.
v=\frac{0±\frac{2\sqrt{55}}{5}}{2}
Take the square root of 8.8.
v=\frac{\sqrt{55}}{5}
Now solve the equation v=\frac{0±\frac{2\sqrt{55}}{5}}{2} when ± is plus.
v=-\frac{\sqrt{55}}{5}
Now solve the equation v=\frac{0±\frac{2\sqrt{55}}{5}}{2} when ± is minus.
v=\frac{\sqrt{55}}{5} v=-\frac{\sqrt{55}}{5}
The equation is now solved.