Factor
\left(v-5\right)\left(v+12\right)
Evaluate
\left(v-5\right)\left(v+12\right)
Share
Copied to clipboard
a+b=7 ab=1\left(-60\right)=-60
Factor the expression by grouping. First, the expression needs to be rewritten as v^{2}+av+bv-60. To find a and b, set up a system to be solved.
-1,60 -2,30 -3,20 -4,15 -5,12 -6,10
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -60.
-1+60=59 -2+30=28 -3+20=17 -4+15=11 -5+12=7 -6+10=4
Calculate the sum for each pair.
a=-5 b=12
The solution is the pair that gives sum 7.
\left(v^{2}-5v\right)+\left(12v-60\right)
Rewrite v^{2}+7v-60 as \left(v^{2}-5v\right)+\left(12v-60\right).
v\left(v-5\right)+12\left(v-5\right)
Factor out v in the first and 12 in the second group.
\left(v-5\right)\left(v+12\right)
Factor out common term v-5 by using distributive property.
v^{2}+7v-60=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
v=\frac{-7±\sqrt{7^{2}-4\left(-60\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
v=\frac{-7±\sqrt{49-4\left(-60\right)}}{2}
Square 7.
v=\frac{-7±\sqrt{49+240}}{2}
Multiply -4 times -60.
v=\frac{-7±\sqrt{289}}{2}
Add 49 to 240.
v=\frac{-7±17}{2}
Take the square root of 289.
v=\frac{10}{2}
Now solve the equation v=\frac{-7±17}{2} when ± is plus. Add -7 to 17.
v=5
Divide 10 by 2.
v=-\frac{24}{2}
Now solve the equation v=\frac{-7±17}{2} when ± is minus. Subtract 17 from -7.
v=-12
Divide -24 by 2.
v^{2}+7v-60=\left(v-5\right)\left(v-\left(-12\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 5 for x_{1} and -12 for x_{2}.
v^{2}+7v-60=\left(v-5\right)\left(v+12\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
x ^ 2 +7x -60 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -7 rs = -60
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{7}{2} - u s = -\frac{7}{2} + u
Two numbers r and s sum up to -7 exactly when the average of the two numbers is \frac{1}{2}*-7 = -\frac{7}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{7}{2} - u) (-\frac{7}{2} + u) = -60
To solve for unknown quantity u, substitute these in the product equation rs = -60
\frac{49}{4} - u^2 = -60
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -60-\frac{49}{4} = -\frac{289}{4}
Simplify the expression by subtracting \frac{49}{4} on both sides
u^2 = \frac{289}{4} u = \pm\sqrt{\frac{289}{4}} = \pm \frac{17}{2}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{7}{2} - \frac{17}{2} = -12 s = -\frac{7}{2} + \frac{17}{2} = 5
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}