v = p ( 1 - d \% )
Solve for d
\left\{\begin{matrix}d=-\frac{100v}{p}+100\text{, }&p\neq 0\\d\in \mathrm{R}\text{, }&v=0\text{ and }p=0\end{matrix}\right.
Solve for p
\left\{\begin{matrix}p=-\frac{100v}{d-100}\text{, }&d\neq 100\\p\in \mathrm{R}\text{, }&v=0\text{ and }d=100\end{matrix}\right.
Share
Copied to clipboard
v=p+p\left(-\frac{d}{100}\right)
Use the distributive property to multiply p by 1-\frac{d}{100}.
v=p+\frac{-pd}{100}
Express p\left(-\frac{d}{100}\right) as a single fraction.
p+\frac{-pd}{100}=v
Swap sides so that all variable terms are on the left hand side.
\frac{-pd}{100}=v-p
Subtract p from both sides.
-pd=100v-100p
Multiply both sides of the equation by 100.
\left(-p\right)d=100v-100p
The equation is in standard form.
\frac{\left(-p\right)d}{-p}=\frac{100v-100p}{-p}
Divide both sides by -p.
d=\frac{100v-100p}{-p}
Dividing by -p undoes the multiplication by -p.
d=-\frac{100v}{p}+100
Divide 100v-100p by -p.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}