Solve for a
a=\frac{5b}{6}-\frac{v}{6}-c
Solve for b
b=\frac{v+6a+6c}{5}
Share
Copied to clipboard
v=-6a+2b+3\left(b-2c\right)
Use the distributive property to multiply -2 by 3a-b.
v=-6a+2b+3b-6c
Use the distributive property to multiply 3 by b-2c.
v=-6a+5b-6c
Combine 2b and 3b to get 5b.
-6a+5b-6c=v
Swap sides so that all variable terms are on the left hand side.
-6a-6c=v-5b
Subtract 5b from both sides.
-6a=v-5b+6c
Add 6c to both sides.
-6a=v+6c-5b
The equation is in standard form.
\frac{-6a}{-6}=\frac{v+6c-5b}{-6}
Divide both sides by -6.
a=\frac{v+6c-5b}{-6}
Dividing by -6 undoes the multiplication by -6.
a=\frac{5b}{6}-\frac{v}{6}-c
Divide v-5b+6c by -6.
v=-6a+2b+3\left(b-2c\right)
Use the distributive property to multiply -2 by 3a-b.
v=-6a+2b+3b-6c
Use the distributive property to multiply 3 by b-2c.
v=-6a+5b-6c
Combine 2b and 3b to get 5b.
-6a+5b-6c=v
Swap sides so that all variable terms are on the left hand side.
5b-6c=v+6a
Add 6a to both sides.
5b=v+6a+6c
Add 6c to both sides.
\frac{5b}{5}=\frac{v+6a+6c}{5}
Divide both sides by 5.
b=\frac{v+6a+6c}{5}
Dividing by 5 undoes the multiplication by 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}