Solve for b
\left\{\begin{matrix}b=-\frac{2\sqrt{3}x}{4-2v-x^{2}}\text{, }&x\neq 0\text{ and }v\neq -\frac{x^{2}}{2}+2\\b\neq 0\text{, }&v=2\text{ and }x=0\end{matrix}\right.
Solve for v
v=-\frac{x^{2}}{2}+\frac{\sqrt{3}x}{b}+2
b\neq 0
Graph
Share
Copied to clipboard
v\times 2b=-bx^{2}+2\sqrt{3}x+2b\times 2
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2b, the least common multiple of 2,b.
v\times 2b=-bx^{2}+2\sqrt{3}x+4b
Multiply 2 and 2 to get 4.
v\times 2b+bx^{2}=2\sqrt{3}x+4b
Add bx^{2} to both sides.
v\times 2b+bx^{2}-4b=2\sqrt{3}x
Subtract 4b from both sides.
\left(v\times 2+x^{2}-4\right)b=2\sqrt{3}x
Combine all terms containing b.
\left(x^{2}+2v-4\right)b=2\sqrt{3}x
The equation is in standard form.
\frac{\left(x^{2}+2v-4\right)b}{x^{2}+2v-4}=\frac{2\sqrt{3}x}{x^{2}+2v-4}
Divide both sides by x^{2}+2v-4.
b=\frac{2\sqrt{3}x}{x^{2}+2v-4}
Dividing by x^{2}+2v-4 undoes the multiplication by x^{2}+2v-4.
b=\frac{2\sqrt{3}x}{x^{2}+2v-4}\text{, }b\neq 0
Variable b cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}