Solve for v
v=5
Share
Copied to clipboard
v^{2}=\left(\sqrt{2v+15}\right)^{2}
Square both sides of the equation.
v^{2}=2v+15
Calculate \sqrt{2v+15} to the power of 2 and get 2v+15.
v^{2}-2v=15
Subtract 2v from both sides.
v^{2}-2v-15=0
Subtract 15 from both sides.
a+b=-2 ab=-15
To solve the equation, factor v^{2}-2v-15 using formula v^{2}+\left(a+b\right)v+ab=\left(v+a\right)\left(v+b\right). To find a and b, set up a system to be solved.
1,-15 3,-5
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -15.
1-15=-14 3-5=-2
Calculate the sum for each pair.
a=-5 b=3
The solution is the pair that gives sum -2.
\left(v-5\right)\left(v+3\right)
Rewrite factored expression \left(v+a\right)\left(v+b\right) using the obtained values.
v=5 v=-3
To find equation solutions, solve v-5=0 and v+3=0.
5=\sqrt{2\times 5+15}
Substitute 5 for v in the equation v=\sqrt{2v+15}.
5=5
Simplify. The value v=5 satisfies the equation.
-3=\sqrt{2\left(-3\right)+15}
Substitute -3 for v in the equation v=\sqrt{2v+15}.
-3=3
Simplify. The value v=-3 does not satisfy the equation because the left and the right hand side have opposite signs.
v=5
Equation v=\sqrt{2v+15} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}