Solve for d_1
d_{1}=tv+d_{2}
t\neq 0
Solve for d_2
d_{2}=d_{1}-tv
t\neq 0
Share
Copied to clipboard
vt=1\left(d_{1}-d_{2}\right)
Multiply both sides of the equation by t.
vt=d_{1}-d_{2}
Use the distributive property to multiply 1 by d_{1}-d_{2}.
d_{1}-d_{2}=vt
Swap sides so that all variable terms are on the left hand side.
d_{1}=vt+d_{2}
Add d_{2} to both sides.
vt=1\left(d_{1}-d_{2}\right)
Multiply both sides of the equation by t.
vt=d_{1}-d_{2}
Use the distributive property to multiply 1 by d_{1}-d_{2}.
d_{1}-d_{2}=vt
Swap sides so that all variable terms are on the left hand side.
-d_{2}=vt-d_{1}
Subtract d_{1} from both sides.
-d_{2}=tv-d_{1}
The equation is in standard form.
\frac{-d_{2}}{-1}=\frac{tv-d_{1}}{-1}
Divide both sides by -1.
d_{2}=\frac{tv-d_{1}}{-1}
Dividing by -1 undoes the multiplication by -1.
d_{2}=d_{1}-tv
Divide vt-d_{1} by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}