Solve for t
t=-\frac{40}{u-2v}
v\neq \frac{u}{2}
Solve for u
u=2v-\frac{40}{t}
t\neq 0
Share
Copied to clipboard
v\times 2t=\frac{1}{2}u\times 2t+5\times 2\times 4
Variable t cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2t, the least common multiple of 2,t.
v\times 2t=ut+5\times 2\times 4
Multiply \frac{1}{2} and 2 to get 1.
v\times 2t=ut+10\times 4
Multiply 5 and 2 to get 10.
v\times 2t=ut+40
Multiply 10 and 4 to get 40.
v\times 2t-ut=40
Subtract ut from both sides.
\left(v\times 2-u\right)t=40
Combine all terms containing t.
\left(2v-u\right)t=40
The equation is in standard form.
\frac{\left(2v-u\right)t}{2v-u}=\frac{40}{2v-u}
Divide both sides by 2v-u.
t=\frac{40}{2v-u}
Dividing by 2v-u undoes the multiplication by 2v-u.
t=\frac{40}{2v-u}\text{, }t\neq 0
Variable t cannot be equal to 0.
v\times 2t=\frac{1}{2}u\times 2t+5\times 2\times 4
Multiply both sides of the equation by 2t, the least common multiple of 2,t.
v\times 2t=ut+5\times 2\times 4
Multiply \frac{1}{2} and 2 to get 1.
v\times 2t=ut+10\times 4
Multiply 5 and 2 to get 10.
v\times 2t=ut+40
Multiply 10 and 4 to get 40.
ut+40=v\times 2t
Swap sides so that all variable terms are on the left hand side.
ut=v\times 2t-40
Subtract 40 from both sides.
tu=2tv-40
The equation is in standard form.
\frac{tu}{t}=\frac{2tv-40}{t}
Divide both sides by t.
u=\frac{2tv-40}{t}
Dividing by t undoes the multiplication by t.
u=2v-\frac{40}{t}
Divide 2vt-40 by t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}